IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v33y2020i4d10.1007_s10959-019-00947-4.html
   My bibliography  Save this article

Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity

Author

Listed:
  • E. Löcherbach

    (SAMM, Université de Paris 1 Panthéon Sorbonne)

Abstract

We consider a time-inhomogeneous Markov process $$X = (X_t)_t$$ X = ( X t ) t with jumps having state-dependent jump intensity, with values in $${\mathbb {R}}^d , $$ R d , and we are interested in its longtime behavior. The infinitesimal generator of the process is given for any sufficiently smooth test function f by $$\begin{aligned} L_t f (x) = \sum _{i=1}^d \frac{\partial f}{\partial x_i } (x) b^i ( t,x) + \int _{{\mathbb {R}}^m } [ f ( x + c ( t, z, x)) - f(x)] \gamma ( t, z, x) \mu (\mathrm{d}z ) , \end{aligned}$$ L t f ( x ) = ∑ i = 1 d ∂ f ∂ x i ( x ) b i ( t , x ) + ∫ R m [ f ( x + c ( t , z , x ) ) - f ( x ) ] γ ( t , z , x ) μ ( d z ) , where $$ \mu $$ μ is a $$\sigma $$ σ -finite measure on $$({\mathbb {R}}^m , {\mathcal B} ( {\mathbb {R}}^m ) ) $$ ( R m , B ( R m ) ) describing the jumps of the process. We give conditions on the coefficients b(t, x) , c(t, z, x) and $$ \gamma ( t, z, x ) $$ γ ( t , z , x ) under which the longtime behavior of X can be related to the longtime behavior of a time-homogeneous limit process $${\bar{X}} . $$ X ¯ . Moreover, we introduce a coupling method for the limit process which is entirely based on certain of its big jumps and which relies on the regeneration method. We state explicit conditions in terms of the coefficients of the process allowing control of the speed of convergence to equilibrium both for X and for $${\bar{X}}$$ X ¯ .

Suggested Citation

  • E. Löcherbach, 2020. "Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2280-2314, December.
  • Handle: RePEc:spr:jotpro:v:33:y:2020:i:4:d:10.1007_s10959-019-00947-4
    DOI: 10.1007/s10959-019-00947-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-019-00947-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-019-00947-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kulik, Alexey M., 2009. "Exponential ergodicity of the solutions to SDE's with a jump noise," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 602-632, February.
    2. Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
    3. Graham, Carl, 1992. "McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 69-82, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Mingjie & Wang, Jian, 2020. "Gradient estimates and ergodicity for SDEs driven by multiplicative Lévy noises via coupling," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3053-3094.
    2. Palczewski, Jan & Stettner, Łukasz, 2014. "Infinite horizon stopping problems with (nearly) total reward criteria," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 3887-3920.
    3. Oleksii Kulyk, 2023. "Support Theorem for Lévy-driven Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1720-1742, September.
    4. Schmisser, Émeline, 2019. "Non parametric estimation of the diffusion coefficients of a diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5364-5405.
    5. Noh, Jungsik & Lee, Seung Y. & Lee, Sangyeol, 2012. "Quantile regression estimation for discretely observed SDE models with compound Poisson jumps," Economics Letters, Elsevier, vol. 117(3), pages 734-738.
    6. Yuma Uehara, 2023. "Bootstrap method for misspecified ergodic Lévy driven stochastic differential equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 533-565, August.
    7. Yulin Song, 2020. "Gradient Estimates and Exponential Ergodicity for Mean-Field SDEs with Jumps," Journal of Theoretical Probability, Springer, vol. 33(1), pages 201-238, March.
    8. Detering, Nils & Fouque, Jean-Pierre & Ichiba, Tomoyuki, 2020. "Directed chain stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2519-2551.
    9. Jun Moon & Wonhee Kim, 2020. "Explicit Characterization of Feedback Nash Equilibria for Indefinite, Linear-Quadratic, Mean-Field-Type Stochastic Zero-Sum Differential Games with Jump-Diffusion Models," Mathematics, MDPI, vol. 8(10), pages 1-23, September.
    10. Graham, Carl, 2011. "Convergence of multi-class systems of fixed possibly infinite sizes," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 31-35, January.
    11. Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.
    12. Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.
    13. Tugaut, Julian, 2013. "Self-stabilizing processes in multi-wells landscape in Rd-convergence," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1780-1801.
    14. Song, Yan-Hong, 2016. "Algebraic ergodicity for SDEs driven by Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 108-115.
    15. Benazzoli, Chiara & Campi, Luciano & Di Persio, Luca, 2020. "Mean field games with controlled jump–diffusion dynamics: Existence results and an illiquid interbank market model," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6927-6964.
    16. Fabian Mies & Ansgar Steland, 2019. "Nonparametric Gaussian inference for stable processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 525-555, October.
    17. Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.
    18. Kulik, Alexey M., 2011. "Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1044-1075, May.
    19. Bayraktar, Erhan & Wu, Ruoyu, 2021. "Mean field interaction on random graphs with dynamically changing multi-color edges," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 197-244.
    20. Dai Pra, Paolo & Formentin, Marco & Pelino, Guglielmo, 2021. "A hierarchical mean field model of interacting spins," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 287-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:33:y:2020:i:4:d:10.1007_s10959-019-00947-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.