IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i4p1301-1318.html
   My bibliography  Save this article

Girsanov’s formula for G-Brownian motion

Author

Listed:
  • Osuka, Emi

Abstract

In this paper, we establish Girsanov’s formula for G-Brownian motion. Peng (2007, 2008) [7,8] constructed G-Brownian motion on the space of continuous paths under a sublinear expectation called G-expectation; as obtained by Denis et al. (2011) [2], G-expectation is represented as the supremum of linear expectations with respect to martingale measures of a certain class. Our argument is based on this representation with an enlargement of the associated class of martingale measures, and on Girsanov’s formula for martingales in the classical stochastic analysis. The methodology differs from that of Xu et al. (2011) [13], and applies to the multidimensional G-Brownian motion.

Suggested Citation

  • Osuka, Emi, 2013. "Girsanov’s formula for G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1301-1318.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:4:p:1301-1318
    DOI: 10.1016/j.spa.2012.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912002700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soner, H. Mete & Touzi, Nizar & Zhang, Jianfeng, 2011. "Martingale representation theorem for the G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 265-287, February.
    2. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biagini, Francesca & Mancin, Jacopo & Brandis, Thilo Meyer, 2019. "Robust mean–variance hedging via G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1287-1325.
    2. Erhan Bayraktar & Alexander Munk, 2014. "An $\alpha$-stable limit theorem under sublinear expectation," Papers 1409.7960, arXiv.org, revised Jun 2016.
    3. Jaehyun Kim & Hyungbin Park, 2024. "Long-term decomposition of robust pricing kernels under G-expectation," Papers 2409.00535, arXiv.org.
    4. Francesca Biagini & Jacopo Mancin & Thilo Meyer Brandis, 2016. "Robust Mean-Variance Hedging via G-Expectation," Papers 1602.05484, arXiv.org, revised Aug 2016.
    5. Guomin Liu, 2021. "Girsanov Theorem for G-Brownian Motion: The Degenerate Case," Journal of Theoretical Probability, Springer, vol. 34(1), pages 125-140, March.
    6. Erhan Bayraktar & Alexander Munk, 2014. "Comparing the $G$-Normal Distribution to its Classical Counterpart," Papers 1407.5139, arXiv.org, revised Dec 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    2. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    3. Epstein, Larry G. & Ji, Shaolin, 2014. "Ambiguous volatility, possibility and utility in continuous time," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 269-282.
    4. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    5. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    6. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    7. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    8. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    9. Erhan Bayraktar & Alexander Munk, 2014. "Comparing the $G$-Normal Distribution to its Classical Counterpart," Papers 1407.5139, arXiv.org, revised Dec 2014.
    10. Peter Bank & Yan Dolinsky & Selim Gokay, 2014. "Super-replication with nonlinear transaction costs and volatility uncertainty," Papers 1411.1229, arXiv.org, revised Jun 2015.
    11. Dolinsky, Yan & Nutz, Marcel & Soner, H. Mete, 2012. "Weak approximation of G-expectations," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 664-675.
    12. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    13. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    14. Song, Yongsheng, 2019. "Properties of G-martingales with finite variation and the application to G-Sobolev spaces," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 2066-2085.
    15. He, Wei, 2024. "Multi-dimensional mean-reflected BSDEs driven by G-Brownian motion with time-varying non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 206(C).
    16. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Backward stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 759-784.
    17. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    18. Mingshang Hu & Xiaojuan Li, 2014. "Independence Under the $$G$$ -Expectation Framework," Journal of Theoretical Probability, Springer, vol. 27(3), pages 1011-1020, September.
    19. Nendel, Max & Riedel, Frank & Schmeck, Maren Diane, 2021. "A decomposition of general premium principles into risk and deviation," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 193-209.
    20. Drapeau, Samuel & Heyne, Gregor & Kupper, Michael, 2015. "Minimal supersolutions of BSDEs under volatility uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2895-2909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:4:p:1301-1318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.