IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v27y2014i3d10.1007_s10959-012-0471-y.html
   My bibliography  Save this article

Independence Under the $$G$$ -Expectation Framework

Author

Listed:
  • Mingshang Hu

    (Shandong University)

  • Xiaojuan Li

    (Shandong Youth University of Political Science)

Abstract

We show that, for two non-trivial random variables $$X$$ and $$Y$$ under a sublinear expectation space, if $$X$$ is independent from $$Y$$ and $$Y$$ is independent from $$X$$ , then $$X$$ and $$Y$$ must be maximally distributed.

Suggested Citation

  • Mingshang Hu & Xiaojuan Li, 2014. "Independence Under the $$G$$ -Expectation Framework," Journal of Theoretical Probability, Springer, vol. 27(3), pages 1011-1020, September.
  • Handle: RePEc:spr:jotpro:v:27:y:2014:i:3:d:10.1007_s10959-012-0471-y
    DOI: 10.1007/s10959-012-0471-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-012-0471-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-012-0471-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soner, H. Mete & Touzi, Nizar & Zhang, Jianfeng, 2011. "Martingale representation theorem for the G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 265-287, February.
    2. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Biagini & Andrea Mazzon & Katharina Oberpriller, 2023. "Multi-dimensional fractional Brownian motion in the G-setting," Papers 2312.12139, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    2. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    3. Nendel, Max, 2019. "On Nonlinear Expectations and Markov Chains under Model Uncertainty," Center for Mathematical Economics Working Papers 628, Center for Mathematical Economics, Bielefeld University.
    4. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    5. Shige Peng & Shuzhen Yang & Jianfeng Yao, 2018. "Improving Value-at-Risk prediction under model uncertainty," Papers 1805.03890, arXiv.org, revised Jun 2020.
    6. Epstein, Larry G. & Ji, Shaolin, 2014. "Ambiguous volatility, possibility and utility in continuous time," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 269-282.
    7. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    8. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    9. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    10. Wei Chen, 2013. "Fractional G-White Noise Theory, Wavelet Decomposition for Fractional G-Brownian Motion, and Bid-Ask Pricing Application to Finance Under Uncertainty," Papers 1306.4070, arXiv.org.
    11. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    12. Dela Vega, Engel John C. & Elliott, Robert J., 2022. "Backward stochastic differential equations with regime-switching and sublinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 278-298.
    13. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    14. Erhan Bayraktar & Alexander Munk, 2014. "Comparing the $G$-Normal Distribution to its Classical Counterpart," Papers 1407.5139, arXiv.org, revised Dec 2014.
    15. Peter Bank & Yan Dolinsky & Selim Gokay, 2014. "Super-replication with nonlinear transaction costs and volatility uncertainty," Papers 1411.1229, arXiv.org, revised Jun 2015.
    16. Osuka, Emi, 2013. "Girsanov’s formula for G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1301-1318.
    17. Nendel, Max, 2018. "Markov Chains under Nonlinear Expectation," Center for Mathematical Economics Working Papers 588, Center for Mathematical Economics, Bielefeld University.
    18. Dolinsky, Yan & Nutz, Marcel & Soner, H. Mete, 2012. "Weak approximation of G-expectations," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 664-675.
    19. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    20. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:27:y:2014:i:3:d:10.1007_s10959-012-0471-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.