IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v100y2021icp193-209.html
   My bibliography  Save this article

A decomposition of general premium principles into risk and deviation

Author

Listed:
  • Nendel, Max
  • Riedel, Frank
  • Schmeck, Maren Diane

Abstract

We provide an axiomatic approach to general premium principles in a probability-free setting that allows for Knightian uncertainty. Every premium principle is the sum of a risk measure, as a generalization of the expected value, and a deviation measure, as a generalization of the variance. One can uniquely identify a maximal risk measure and a minimal deviation measure in such decompositions. We show how previous axiomatizations of premium principles can be embedded into our more general framework. We discuss dual representations of convex premium principles, and study the consistency of premium principles with a financial market in which insurance contracts are traded.

Suggested Citation

  • Nendel, Max & Riedel, Frank & Schmeck, Maren Diane, 2021. "A decomposition of general premium principles into risk and deviation," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 193-209.
  • Handle: RePEc:eee:insuma:v:100:y:2021:i:c:p:193-209
    DOI: 10.1016/j.insmatheco.2021.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721000895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    2. Soner, H. Mete & Touzi, Nizar & Zhang, Jianfeng, 2011. "Martingale representation theorem for the G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 265-287, February.
    3. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    4. Schmeck, Maren Diane & Schmidli, Hanspeter, 2019. "Mortality Options: the Point of View of an Insurer," Center for Mathematical Economics Working Papers 616, Center for Mathematical Economics, Bielefeld University.
    5. M. A. Milevsky & S. D. Promislow & V. R. Young, 2006. "Killing the Law of Large Numbers: Mortality Risk Premiums and the Sharpe Ratio," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 673-686, December.
    6. Cairns, Andrew J. G., 2000. "A discussion of parameter and model uncertainty in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 313-330, December.
    7. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    8. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    9. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    10. Castagnoli, Erio & Maccheroni, Fabio & Marinacci, Massimo, 2002. "Insurance premia consistent with the market," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 267-284, October.
    11. Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.
    12. Liu, Fangda & Cai, Jun & Lemieux, Christiane & Wang, Ruodu, 2020. "Convex risk functionals: Representation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 66-79.
    13. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    14. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    15. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, December.
    16. Biagini, Francesca & Rheinländer, Thorsten & Widenmann, Jan, 2013. "Hedging Mortality Claims With Longevity Bonds," ASTIN Bulletin, Cambridge University Press, vol. 43(2), pages 123-157, May.
    17. Schmeck, Maren Diane & Schmidli, Hanspeter, 2021. "Mortality options: The point of view of an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 98-115.
    18. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    19. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    20. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    21. Filipovic, Damir & Kupper, Michael, 2007. "Monotone and cash-invariant convex functions and hulls," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 1-16, July.
    22. repec:dau:papers:123456789/342 is not listed on IDEAS
    23. Schweizer, Martin, 2001. "From actuarial to financial valuation principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 31-47, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix-Benedikt Liebrich & Cosimo Munari, 2022. "Law-Invariant Functionals that Collapse to the Mean: Beyond Convexity," Mathematics and Financial Economics, Springer, volume 16, number 2, December.
    2. Max Nendel & Jan Streicher, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Papers 2303.08217, arXiv.org, revised Sep 2023.
    3. Samuel Solgon Santos & Marlon Ruoso Moresco & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2023. "A note on the induction of comonotonic additive risk measures from acceptance sets," Papers 2307.04647, arXiv.org, revised Jul 2023.
    4. Santos, Samuel S. & Moresco, Marlon R. & Righi, Marcelo B. & Horta, Eduardo, 2024. "A note on the induction of comonotonic additive risk measures from acceptance sets," Statistics & Probability Letters, Elsevier, vol. 208(C).
    5. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2022. "Star-Shaped deviations," Papers 2207.08613, arXiv.org.
    6. Nendel, Max & Streicher, Jan, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Journal of Mathematical Economics, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    2. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    3. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    4. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    5. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    6. He, Ying & Dyer, James S. & Butler, John C. & Jia, Jianmin, 2019. "An additive model of decision making under risk and ambiguity," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 78-92.
    7. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    8. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    9. Grant, Simon & Polak, Ben, 2013. "Mean-dispersion preferences and constant absolute uncertainty aversion," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1361-1398.
    10. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    11. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    12. Zhijun Zhao, 2011. "Preference Relativity, Ambiguity and Social Welfare Evaluation," Working Papers 352011, Hong Kong Institute for Monetary Research.
    13. Tolulope Fadina & Yang Liu & Ruodu Wang, 2021. "A Framework for Measures of Risk under Uncertainty," Papers 2110.10792, arXiv.org, revised Sep 2023.
    14. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.
    15. Hans Follmer & Alexander Schied, 2013. "Probabilistic aspects of finance," Papers 1309.7759, arXiv.org.
    16. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    17. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    18. André, Eric, 2014. "Optimal portfolio with vector expected utility," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 50-62.
    19. Patrick Beissner & Frank Riedel, 2019. "Equilibria Under Knightian Price Uncertainty," Econometrica, Econometric Society, vol. 87(1), pages 37-64, January.
    20. Sigrid Källblad, 2017. "Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals," Finance and Stochastics, Springer, vol. 21(2), pages 397-425, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:100:y:2021:i:c:p:193-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.