IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i8p1770-1784.html
   My bibliography  Save this article

Properties of hitting times for G-martingales and their applications

Author

Listed:
  • Song, Yongsheng

Abstract

In this article, we consider the properties of hitting times for G-martingales and the stopped processes. We prove that the stopped processes for G-martingales are still G-martingales and that the hitting times for a class of G-martingales including one-dimensional G-Brownian motion are quasi-continuous. As an application, we improve the G-martingale representation theorems of [7].

Suggested Citation

  • Song, Yongsheng, 2011. "Properties of hitting times for G-martingales and their applications," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1770-1784, August.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:8:p:1770-1784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911000974
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    2. Marcel Nutz & Ramon van Handel, 2012. "Constructing Sublinear Expectations on Path Space," Papers 1205.2415, arXiv.org, revised Apr 2013.
    3. Song, Yongsheng, 2019. "Properties of G-martingales with finite variation and the application to G-Sobolev spaces," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 2066-2085.
    4. Nutz, Marcel & van Handel, Ramon, 2013. "Constructing sublinear expectations on path space," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3100-3121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    2. Laurence Carassus, 2021. "Quasi-sure essential supremum and applications to finance," Papers 2107.12862, arXiv.org, revised Mar 2024.
    3. Xiao, Guanli & Wang, JinRong & O’Regan, Donal, 2020. "Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Criens, David & Niemann, Lars, 2024. "A class of multidimensional nonlinear diffusions with the Feller property," Statistics & Probability Letters, Elsevier, vol. 208(C).
    5. Wei Chen, 2013. "Fractional G-White Noise Theory, Wavelet Decomposition for Fractional G-Brownian Motion, and Bid-Ask Pricing Application to Finance Under Uncertainty," Papers 1306.4070, arXiv.org.
    6. Ren, Yong & Hu, Lanying, 2011. "A note on the stochastic differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 580-585, May.
    7. Shige Peng & Huilin Zhang, 2022. "Wong–Zakai Approximation for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 410-425, March.
    8. Fadina, Tolulope & Herzberg, Frederik, 2014. "Weak approximation of G-expectation with discrete state space," Center for Mathematical Economics Working Papers 503, Center for Mathematical Economics, Bielefeld University.
    9. Max Nendel, 2021. "Markov chains under nonlinear expectation," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 474-507, January.
    10. Marcel Nutz & Ramon van Handel, 2012. "Constructing Sublinear Expectations on Path Space," Papers 1205.2415, arXiv.org, revised Apr 2013.
    11. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    12. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    13. Marcel Nutz, 2011. "A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations," Papers 1106.3273, arXiv.org, revised May 2012.
    14. Gao, Fuqing & Jiang, Hui, 2010. "Large deviations for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2212-2240, November.
    15. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    16. Zhengqi Ma & Shoucheng Yuan & Kexin Meng & Shuli Mei, 2023. "Mean-Square Stability of Uncertain Delayed Stochastic Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    17. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    18. Zhengqi Ma & Hongyin Jiang & Chun Li & Defei Zhang & Xiaoyou Liu, 2024. "Stochastic Intermittent Control with Uncertainty," Mathematics, MDPI, vol. 12(13), pages 1-15, June.
    19. Zhang, Xuekang & Huang, Chengzhe & Deng, Shounian, 2024. "Nonparametric estimation for periodic stochastic differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 214(C).
    20. Xu, Yuhong, 2022. "Optimal growth under model uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:8:p:1770-1784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.