IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i10p3494-3515.html
   My bibliography  Save this article

An empirical Central Limit Theorem in for stationary sequences

Author

Listed:
  • Dede, Sophie

Abstract

In this paper, we derive asymptotic results for the -Wasserstein distance between the distribution function and the corresponding empirical distribution function of a stationary sequence. Next, we give some applications to dynamical systems and causal linear processes. To prove our main result, we give a Central Limit Theorem for ergodic stationary sequences of random variables with values in . The conditions obtained are expressed in terms of projective-type conditions. The main tools are martingale approximations.

Suggested Citation

  • Dede, Sophie, 2009. "An empirical Central Limit Theorem in for stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3494-3515, October.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3494-3515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00112-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Araujo, Aloisio Pessoa, 1978. "On the central limit theorem in Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 8(4), pages 598-613, December.
    2. Volný, Dalibor, 1993. "Approximating martingales and the central limit theorem for strictly stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 44(1), pages 41-74, January.
    3. Dedecker, Jérôme & Doukhan, Paul, 2003. "A new covariance inequality and applications," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 63-80, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volker Krätschmer & Henryk Zähle, 2017. "Statistical Inference for Expectile-based Risk Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 425-454, June.
    2. Lin, Han-Mai & Merlevède, Florence, 2022. "On the weak invariance principle for ortho-martingale in Banach spaces. Application to stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 198-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    2. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    3. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
    4. Wu, Wei Biao, 2009. "An asymptotic theory for sample covariances of Bernoulli shifts," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 453-467, February.
    5. Paul Doukhan & Gilles Teyssière & Pablo Winant, 2005. "A Larch Vector Valued Process," Working Papers 2005-49, Center for Research in Economics and Statistics.
    6. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    7. Davide Giraudo, 2017. "Holderian Weak Invariance Principle for Stationary Mixing Sequences," Journal of Theoretical Probability, Springer, vol. 30(1), pages 196-211, March.
    8. Paul Doukhan & Olivier Wintenberger, 2005. "An Invariance Principle for New Weakly Dependent Stationary Models using Sharp Moment Assumptions," Working Papers 2005-51, Center for Research in Economics and Statistics.
    9. Peligrad, Magda, 2020. "A new CLT for additive functionals of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5695-5708.
    10. Doukhan, Paul & Fokianos, Konstantinos & Li, Xiaoyin, 2012. "On weak dependence conditions: The case of discrete valued processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1941-1948.
    11. Schmuland, Byron & Sun, Wei, 2001. "On the equation [mu]t+s=[mu]s*Ts[mu]t," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 183-188, April.
    12. Moritz Jirak, 2017. "On Weak Invariance Principles for Partial Sums," Journal of Theoretical Probability, Springer, vol. 30(3), pages 703-728, September.
    13. Jirak, Moritz, 2013. "A Darling–Erdös type result for stationary ellipsoids," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1922-1946.
    14. Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
    15. Jean-Marc Bardet & Paul Doukhan & José Rafael Leon_, 2005. "Uniform Limit Theorems for the Integrated Periodogram of Weakly Dependent Time Series and their Applications to Whittle's Estimate," Working Papers 2005-46, Center for Research in Economics and Statistics.
    16. Florence Merlevède & Magda Peligrad, 2006. "On the Weak Invariance Principle for Stationary Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 19(3), pages 647-689, December.
    17. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 605-635.
    18. Cuny, Christophe & Dedecker, Jérôme & Merlevède, Florence, 2018. "On the Komlós, Major and Tusnády strong approximation for some classes of random iterates," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1347-1385.
    19. Rootzén, Holger, 2009. "Weak convergence of the tail empirical process for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 468-490, February.
    20. Paul Doukhan & Hélène Madre & Mathieu Rosenbaum, 2005. "Weak Dependence Beyond Mixing for Infinite ARCH-type Bilinear Models," Working Papers 2005-50, Center for Research in Economics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3494-3515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.