IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i4p1347-1385.html
   My bibliography  Save this article

On the Komlós, Major and Tusnády strong approximation for some classes of random iterates

Author

Listed:
  • Cuny, Christophe
  • Dedecker, Jérôme
  • Merlevède, Florence

Abstract

The famous results of Komlós, Major and Tusnády (see Komlós et al., 1976 [15] and Major, 1976 [17]) state that it is possible to approximate almost surely the partial sums of size n of i.i.d. centered random variables in Lp (p>2) by a Wiener process with an error term of order o(n1∕p). Very recently, Berkes et al. (2014) extended this famous result to partial sums associated with functions of an i.i.d. sequence, provided a condition on a functional dependence measure in Lp is satisfied. In this paper, we adapt the method of Berkes, Liu and Wu to partial sums of functions of random iterates. Taking advantage of the Markovian setting, we shall give new dependent conditions, expressed in terms of a natural coupling (in L∞ or in L1), under which the strong approximation result holds with rate o(n1∕p). As we shall see our conditions are well adapted to a large variety of models, including left random walks on GLd(R), contracting iterated random functions, autoregressive Lipschitz processes, and some ergodic Markov chains. We also provide some examples showing that our L1-coupling condition is in some sense optimal.

Suggested Citation

  • Cuny, Christophe & Dedecker, Jérôme & Merlevède, Florence, 2018. "On the Komlós, Major and Tusnády strong approximation for some classes of random iterates," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1347-1385.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:4:p:1347-1385
    DOI: 10.1016/j.spa.2017.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917301795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dedecker, Jérôme & Doukhan, Paul, 2003. "A new covariance inequality and applications," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 63-80, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    2. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    3. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
    4. Paul Doukhan & Gilles Teyssière & Pablo Winant, 2005. "A Larch Vector Valued Process," Working Papers 2005-49, Center for Research in Economics and Statistics.
    5. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    6. Davide Giraudo, 2017. "Holderian Weak Invariance Principle for Stationary Mixing Sequences," Journal of Theoretical Probability, Springer, vol. 30(1), pages 196-211, March.
    7. Paul Doukhan & Olivier Wintenberger, 2005. "An Invariance Principle for New Weakly Dependent Stationary Models using Sharp Moment Assumptions," Working Papers 2005-51, Center for Research in Economics and Statistics.
    8. Doukhan, Paul & Fokianos, Konstantinos & Li, Xiaoyin, 2012. "On weak dependence conditions: The case of discrete valued processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1941-1948.
    9. Moritz Jirak, 2017. "On Weak Invariance Principles for Partial Sums," Journal of Theoretical Probability, Springer, vol. 30(3), pages 703-728, September.
    10. Jirak, Moritz, 2013. "A Darling–Erdös type result for stationary ellipsoids," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1922-1946.
    11. Jean-Marc Bardet & Paul Doukhan & José Rafael Leon_, 2005. "Uniform Limit Theorems for the Integrated Periodogram of Weakly Dependent Time Series and their Applications to Whittle's Estimate," Working Papers 2005-46, Center for Research in Economics and Statistics.
    12. Florence Merlevède & Magda Peligrad, 2006. "On the Weak Invariance Principle for Stationary Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 19(3), pages 647-689, December.
    13. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 605-635.
    14. Rootzén, Holger, 2009. "Weak convergence of the tail empirical process for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 468-490, February.
    15. Paul Doukhan & Hélène Madre & Mathieu Rosenbaum, 2005. "Weak Dependence Beyond Mixing for Infinite ARCH-type Bilinear Models," Working Papers 2005-50, Center for Research in Economics and Statistics.
    16. Jean‐Marc Bardet & Paul Doukhan & José Rafael León, 2008. "Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 906-945, September.
    17. Doukhan, Paul & Neumann, Michael H., 2007. "Probability and moment inequalities for sums of weakly dependent random variables, with applications," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 878-903, July.
    18. Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
    19. Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023. "Machine learning panel data regressions with heavy-tailed dependent data: Theory and application," Journal of Econometrics, Elsevier, vol. 237(2).
    20. P. Chigansky & Yu. Kutoyants, 2013. "Estimation in threshold autoregressive models with correlated innovations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 959-992, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:4:p:1347-1385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.