IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i3d10.1007_s10959-023-01306-0.html
   My bibliography  Save this article

Strong Approximations for a Class of Dependent Random Variables with Semi-Exponential Tails

Author

Listed:
  • Christophe Cuny

    (Univ. Brest, UMR 6205 CNRS, LMBA)

  • Jérôme Dedecker

    (Université Paris Cité, MAP5, UMR 8145 CNRS)

  • Florence Merlevède

    (Univ. Gustave Eiffel, Univ. Paris Est Créteil, LAMA, UMR 8050 CNRS)

Abstract

We give rates of convergence in the almost sure invariance principle for sums of dependent random variables with semi-exponential tails, whose coupling coefficients decrease at a sub-exponential rate. We show that the rates in the strong invariance principle are in powers of $$\log n$$ log n . We apply our results to iid products of random matrices.

Suggested Citation

  • Christophe Cuny & Jérôme Dedecker & Florence Merlevède, 2024. "Strong Approximations for a Class of Dependent Random Variables with Semi-Exponential Tails," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2234-2252, September.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-023-01306-0
    DOI: 10.1007/s10959-023-01306-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01306-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01306-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cuny, Christophe & Dedecker, Jérôme & Merlevède, Florence, 2018. "On the Komlós, Major and Tusnády strong approximation for some classes of random iterates," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1347-1385.
    2. Cuny, Christophe & Dedecker, Jérôme & Merlevède, Florence, 2018. "An alternative to the coupling of Berkes–Liu–Wu for strong approximations," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 233-242.
    3. Liu, Quansheng & Watbled, Frédérique, 2009. "Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3101-3132, October.
    4. Dedecker, Jérôme & Doukhan, Paul, 2003. "A new covariance inequality and applications," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 63-80, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Comets & Nobuo Yoshida, 2011. "Branching Random Walks in Space–Time Random Environment: Survival Probability, Global and Local Growth Rates," Journal of Theoretical Probability, Springer, vol. 24(3), pages 657-687, September.
    2. Fan, Xiequan & Grama, Ion & Liu, Quansheng, 2012. "Hoeffding’s inequality for supermartingales," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3545-3559.
    3. Martin Mbele Bidima & Miklos Rasonyi, 2012. "On long-term arbitrage opportunities in Markovian models of financial markets," Annals of Operations Research, Springer, vol. 200(1), pages 131-146, November.
    4. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    5. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    6. Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023. "Machine learning panel data regressions with heavy-tailed dependent data: Theory and application," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    8. P. Chigansky & Yu. Kutoyants, 2013. "Estimation in threshold autoregressive models with correlated innovations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 959-992, October.
    9. Hélène Cossette & Etienne Marceau & Véronique Maume-Deschamps, 2011. "Adjustment Coefficient for Risk Processes in Some Dependent Contexts," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 695-721, December.
    10. Ngai Chan & Yury Kutoyants, 2012. "On parameter estimation of threshold autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 81-104, April.
    11. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
    12. Paul Doukhan & Gilles Teyssière & Pablo Winant, 2005. "A Larch Vector Valued Process," Working Papers 2005-49, Center for Research in Economics and Statistics.
    13. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 605-635.
    14. Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.
    15. Douc, R. & Fort, G. & Moulines, E. & Priouret, P., 2009. "Forgetting the initial distribution for Hidden Markov Models," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1235-1256, April.
    16. Dedecker, Jérôme & Merlevède, Florence & Rio, Emmanuel, 2024. "Deviation inequalities for dependent sequences with applications to strong approximations," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    17. Davide Giraudo, 2017. "Holderian Weak Invariance Principle for Stationary Mixing Sequences," Journal of Theoretical Probability, Springer, vol. 30(1), pages 196-211, March.
    18. Paul Doukhan & Olivier Wintenberger, 2005. "An Invariance Principle for New Weakly Dependent Stationary Models using Sharp Moment Assumptions," Working Papers 2005-51, Center for Research in Economics and Statistics.
    19. Doukhan, Paul & Fokianos, Konstantinos & Li, Xiaoyin, 2012. "On weak dependence conditions: The case of discrete valued processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1941-1948.
    20. Dedecker, Jérôme & Fan, Xiequan, 2015. "Deviation inequalities for separately Lipschitz functionals of iterated random functions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 60-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-023-01306-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.