IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v84y2022ics0038012122001914.html
   My bibliography  Save this article

Modeling mobility, risk, and pandemic severity during the first year of COVID

Author

Listed:
  • Gilgur, Alexander
  • Ramirez-Marquez, Jose Emmanuel

Abstract

During the COVID-19 pandemic, most US states have taken measures of varying strength, enforcing social and physical distancing in the interest of public safety. These measures have enabled counties and states, with varying success, to slow down the propagation and mortality of the disease by matching the propagation rate to the capacity of medical facilities. However, each state’s government was making its decisions based on limited information and without the benefit of being able to look retrospectively at the problem at large and to analyze the commonalities and the differences among the states and the counties across the country. We developed models connecting people’s mobility, socioeconomic, and demographic factors with severity of the COVID pandemic in the US at the County level. These models can be used to inform policymakers and other stakeholders on measures to be taken during a pandemic. They also enable in-depth analysis of factors affecting the relationship between mobility and the severity of the disease. With the exception of one model, that of COVID recovery time, the resulting models accurately predict the vulnerability and severity metrics and rank the explanatory variables in the order of statistical importance. We also analyze and explain why recovery time did not allow for a good model.

Suggested Citation

  • Gilgur, Alexander & Ramirez-Marquez, Jose Emmanuel, 2022. "Modeling mobility, risk, and pandemic severity during the first year of COVID," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122001914
    DOI: 10.1016/j.seps.2022.101397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122001914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Ridenhour, B. & Kowalik, J.M. & Shay, D.K., 2014. "Unraveling R0: Considerations for public health applications," American Journal of Public Health, American Public Health Association, vol. 104(2), pages 32-41.
    3. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    4. Kathy Leung & Joseph T. Wu & Gabriel M. Leung, 2021. "Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Shelby R. Buckman & Reuven Glick & Kevin J. Lansing & Nicolas Petrosky-Nadeau & Lily Seitelman, 2020. "Replicating and Projecting the Path of COVID-19 with a Model-Implied Reproduction Number," Working Paper Series 2020-24, Federal Reserve Bank of San Francisco.
    6. Lina Díaz-Castro & Héctor Cabello-Rangel & Kurt Hoffman, 2021. "The Impact of Health Policies and Sociodemographic Factors on Doubling Time of the COVID-19 Pandemic in Mexico," IJERPH, MDPI, vol. 18(5), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borges, Ana & Carvalho, Mariana & Maia, Miguel & Guimarães, Miguel & Carneiro, Davide, 2023. "Predicting and explaining absenteeism risk in hospital patients before and during COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    3. Mohamed M. Mousa & Fahad Alsharari, 2021. "A Comparative Numerical Study and Stability Analysis for a Fractional-Order SIR Model of Childhood Diseases," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    4. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    5. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    7. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    9. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    10. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    11. Alaa El-Sakran & Reem Salman & Ayman Alzaatreh, 2022. "Impacts of Emergency Remote Teaching on College Students Amid COVID-19 in the UAE," IJERPH, MDPI, vol. 19(5), pages 1-21, March.
    12. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    13. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    14. Mark C. Quigley & Januka Attanayake & Andrew King & Fabian Prideaux, 2020. "A multi-hazards earth science perspective on the COVID-19 pandemic: the potential for concurrent and cascading crises," Environment Systems and Decisions, Springer, vol. 40(2), pages 199-215, June.
    15. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Ruiying Li & Qiang Dong & Chong Jin & Rui Kang, 2017. "A New Resilience Measure for Supply Chain Networks," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    18. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    19. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    20. Lin William Cong & Ke Tang & Bing Wang & Jingyuan Wang, 2021. "An AI-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States," Papers 2109.10009, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122001914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.