IDEAS home Printed from https://ideas.repec.org/a/bla/jrinsu/v90y2023i2p381-419.html
   My bibliography  Save this article

Insurance fraud detection: A statistically validated network approach

Author

Listed:
  • Michele Tumminello
  • Andrea Consiglio
  • Pietro Vassallo
  • Riccardo Cesari
  • Fabio Farabullini

Abstract

Fraud is a social phenomenon, and fraudsters often collaborate with other fraudsters, taking on different roles. The challenge for insurance companies is to implement claim assessment and improve fraud detection accuracy. We developed an investigative system based on bipartite networks, highlighting the relationships between subjects and accidents or vehicles and accidents. We formalize filtering rules through probability models and test specific methods to assess the existence of communities in extensive networks and propose new alert metrics for suspicious structures. We apply the methodology to a real database—the Italian Antifraud Integrated Archive—and compare the results to out‐of‐sample fraud scams under investigation by the judicial authorities.

Suggested Citation

  • Michele Tumminello & Andrea Consiglio & Pietro Vassallo & Riccardo Cesari & Fabio Farabullini, 2023. "Insurance fraud detection: A statistically validated network approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 381-419, June.
  • Handle: RePEc:bla:jrinsu:v:90:y:2023:i:2:p:381-419
    DOI: 10.1111/jori.12415
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jori.12415
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jori.12415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Chamal Gomes & Zhuo Jin & Hailiang Yang, 2021. "Insurance fraud detection with unsupervised deep learning," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 591-624, September.
    3. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, October.
    4. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    5. Steven B. Caudill & Mercedes Ayuso & Montserrat Guillén, 2005. "Fraud Detection Using a Multinomial Logit Model With Missing Information," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(4), pages 539-550, December.
    6. Hong Li & Qifan Song & Jianxi Su, 2021. "Robust estimates of insurance misrepresentation through kernel quantile regression mixtures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 625-663, September.
    7. Bermúdez, Ll. & Pérez, J.M. & Ayuso, M. & Gómez, E. & Vázquez, F.J., 2008. "A Bayesian dichotomous model with asymmetric link for fraud in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 779-786, April.
    8. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    9. Michele Tumminello & Christofer Edling & Fredrik Liljeros & Rosario N Mantegna & Jerzy Sarnecki, 2013. "The Phenomenology of Specialization of Criminal Suspects," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    10. Véronique Van Vlasselaer & Tina Eliassi-Rad & Leman Akoglu & Monique Snoeck & Bart Baesens, 2017. "GOTCHA! Network-Based Fraud Detection for Social Security Fraud," Management Science, INFORMS, vol. 63(9), pages 3090-3110, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    2. Carayol, Nicolas & Bergé, Laurent & Cassi, Lorenzo & Roux, Pascale, 2019. "Unintended triadic closure in social networks: The strategic formation of research collaborations between French inventors," Journal of Economic Behavior & Organization, Elsevier, vol. 163(C), pages 218-238.
    3. Yankol-Schalck, Meryem, 2022. "The value of cross-data set analysis for automobile insurance fraud detection," Research in International Business and Finance, Elsevier, vol. 63(C).
    4. Ariana Paola Cortés Ángel & Mustafa Hakan Eratalay, 2022. "Deep diving into the S&P Europe 350 index network and its reaction to COVID-19," Journal of Computational Social Science, Springer, vol. 5(2), pages 1343-1408, November.
    5. Daniel Bauer & James Tyler Leverty & Joan Schmit & Justin Sydnor, 2021. "Symposium on insure‐tech, digitalization, and big‐data techniques in risk management and insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 525-528, September.
    6. Aslam, Faheem & Hunjra, Ahmed Imran & Ftiti, Zied & Louhichi, Wael & Shams, Tahira, 2022. "Insurance fraud detection: Evidence from artificial intelligence and machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Michele Tumminello & Salvatore Miccichè & Fabrizio Lillo & Jyrki Piilo & Rosario N Mantegna, 2011. "Statistically Validated Networks in Bipartite Complex Systems," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    8. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    9. Marian-Gabriel Hâncean & Matjaž Perc & Lazăr Vlăsceanu, 2014. "Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    10. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    11. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    12. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    13. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    14. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    15. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    16. Tanskanen, Maiju & Aaltonen, Mikko, 2022. "Social correlates of specialized versus versatile offending patterns in intimate partner violence: A register-based study in Finland," Journal of Criminal Justice, Elsevier, vol. 81(C).
    17. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    18. Bernd (B.) Heidergott & Jia-Ping Huang & Ines (I.) Lindner, 2018. "Naive Learning in Social Networks with Random Communication," Tinbergen Institute Discussion Papers 18-018/II, Tinbergen Institute.
    19. Johannes M. Bauer & Michael Latzer, 2016. "The economics of the Internet: an overview," Chapters, in: Johannes M. Bauer & Michael Latzer (ed.), Handbook on the Economics of the Internet, chapter 1, pages 3-20, Edward Elgar Publishing.
    20. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jrinsu:v:90:y:2023:i:2:p:381-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ariaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.