Application of Supervised Machine Learning Techniques to Forecast the COVID-19 U.S. Recession and Stock Market Crash
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-022-10333-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fama, Eugene F. & French, Kenneth R., 2017. "International tests of a five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 123(3), pages 441-463.
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020.
"Taming the Factor Zoo: A Test of New Factors,"
Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2019. "Taming the Factor Zoo: A Test of New Factors," NBER Working Papers 25481, National Bureau of Economic Research, Inc.
- Giglio, Stefano & Feng, Guanhao & Xiu, Dacheng, 2020. "Taming the Factor Zoo: A Test of New Factors," CEPR Discussion Papers 14266, C.E.P.R. Discussion Papers.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
- Serena Ng & Jonathan H. Wright, 2013.
"Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling,"
Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
- Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," NBER Working Papers 19469, National Bureau of Economic Research, Inc.
- Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
- White, Eugene N, 1990. "The Stock Market Boom and Crash of 1929 Revisited," Journal of Economic Perspectives, American Economic Association, vol. 4(2), pages 67-83, Spring.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Matthew D. Shapiro & Mark W. Watson, 1988.
"Sources of Business Cycle Fluctuations,"
NBER Chapters, in: NBER Macroeconomics Annual 1988, Volume 3, pages 111-156,
National Bureau of Economic Research, Inc.
- Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," NBER Working Papers 2589, National Bureau of Economic Research, Inc.
- Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," Cowles Foundation Discussion Papers 870, Cowles Foundation for Research in Economics, Yale University.
- Croushore, Dean & Stark, Tom, 2001.
"A real-time data set for macroeconomists,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
- Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
- Bai, Min & Xu, Limin & Yu, Chia-Feng (Jeffrey) & Zurbruegg, Ralf, 2020. "Superstition and stock price crash risk," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
- Fabio Moneta, 2005. "Does the Yield Spread Predict Recessions in the Euro Area?," International Finance, Wiley Blackwell, vol. 8(2), pages 263-301, August.
- Aderemi O. Adewumi & Andronicus A. Akinyelu, 2017. "A survey of machine-learning and nature-inspired based credit card fraud detection techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 937-953, November.
- Anders Johansen & Didier Sornette, 2010. "Shocks, Crashes and Bubbles in Financial Markets," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 53(2), pages 201-253.
- Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
- Pedro Santa-Clara & Shu Yan, 2010. "Crashes, Volatility, and the Equity Premium: Lessons from S&P 500 Options," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 435-451, May.
- Ahrens, R., 2002. "Predicting recessions with interest rate spreads: a multicountry regime-switching analysis," Journal of International Money and Finance, Elsevier, vol. 21(4), pages 519-537, August.
- Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Dokko, Yoon & Edelstein, Robert H, 1989. "How Well Do Economists Forecast Stock Market Prices? A Study of the Livingston Surveys," American Economic Review, American Economic Association, vol. 79(4), pages 865-871, September.
- Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
- Saul H. Hymans, 1973. "On the Use of Leading Indicators to Predict Cyclical Turning Points," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 4(2), pages 339-384.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"Estimation of large dimensional conditional factor models in finance,"
Working Papers
unige:125031, University of Geneva, Geneva School of Economics and Management.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2019. "Estimation of Large Dimensional Conditional Factor Models in Finance," Swiss Finance Institute Research Paper Series 19-46, Swiss Finance Institute.
- Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
- Fallahgoul, Hasan & Franstianto, Vincentius & Lin, Xin, 2024. "Asset pricing with neural networks: Significance tests," Journal of Econometrics, Elsevier, vol. 238(1).
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Shafiullah, Muhammad & Senthilkumar, Arunachalam & Lucey, Brian M. & Naeem, Muhammad Abubakr, 2024. "Deciphering asymmetric spillovers in US industries: Insights from higher-order moments," Research in International Business and Finance, Elsevier, vol. 70(PA).
- Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.
- Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
- Eun, Cheol & Lee, Kyuseok & Wei, Fengrong, 2023. "Dual role of the country factors in international asset pricing: The local factors and proxies for the global factors," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
- Monica Martinez-Blasco & Vanessa Serrano & Francesc Prior & Jordi Cuadros, 2023. "Analysis of an event study using the Fama–French five-factor model: teaching approaches including spreadsheets and the R programming language," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
- Ciciretti, Rocco & Dalò, Ambrogio & Dam, Lammertjan, 2023.
"The contributions of betas versus characteristics to the ESG premium,"
Journal of Empirical Finance, Elsevier, vol. 71(C), pages 104-124.
- Rocco Ciciretti & Ambrogio Dalò & Lammertjan Dam, 2017. "The Contributions of Betas versus Characteristics to the ESG Premium," CEIS Research Paper 413, Tor Vergata University, CEIS, revised 19 Dec 2019.
- Yu Wang & Haicheng Shu, 2019. "Evaluating the Performance of Factor Pricing Models for Different Stock Market Trends: Evidence from China," Working Papers 2019-10-10, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Mamdouh Medhat & Maik Schmeling, 2022.
"Short-term Momentum,"
The Review of Financial Studies, Society for Financial Studies, vol. 35(3), pages 1480-1526.
- Schmeling, Maik & Medhat, Mamdouh, 2021. "Short-term Momentum," CEPR Discussion Papers 15857, C.E.P.R. Discussion Papers.
- Berggrun, Luis & Cardona, Emilio & Lizarzaburu, Edmundo, 2020. "Firm profitability and expected stock returns: Evidence from Latin America," Research in International Business and Finance, Elsevier, vol. 51(C).
- Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
More about this item
Keywords
Machine learning; Forecasting; Financial econometrics; Recession; Stock market crash;All these keywords.
JEL classification:
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:3:d:10.1007_s10614-022-10333-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.