A survey of machine-learning and nature-inspired based credit card fraud detection techniques
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-016-0551-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rui Miguel Dantas & Raheela Firdaus & Farrokh Jaleel & Pedro Neves Mata & Mário Nuno Mata & Gang Li, 2022. "Systemic Acquired Critique of Credit Card Deception Exposure through Machine Learning," JOItmC, MDPI, vol. 8(4), pages 1-20, October.
- Rama K. Malladi, 2024. "Application of Supervised Machine Learning Techniques to Forecast the COVID-19 U.S. Recession and Stock Market Crash," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1021-1045, March.
- Rosado-Cubero, Ana & Freire-Rubio, Teresa & Hernández, Adolfo, 2022. "Entrepreneurship: What matters most," Journal of Business Research, Elsevier, vol. 144(C), pages 250-263.
- Klockmann, Victor & von Schenk, Alicia & Villeval, Marie Claire, 2022.
"Artificial intelligence, ethics, and intergenerational responsibility,"
Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 284-317.
- Victor Klockmann & Alicia von Schenk & Marie Claire Villeval, 2021. "Artificial Intelligence, Ethics, and Intergenerational Responsibility," Working Papers halshs-03237437, HAL.
- Victor Klockmann & Alicia von Schenk & Marie Claire Villeval, 2021. "Artificial Intelligence, Ethics, and Intergenerational Responsibility," Working Papers 2110, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
- Victor Klockmann & Alicia von Schenk & Marie Claire Villeval, 2022. "Artificial Intelligence, Ethics, and Intergenerational Responsibility," Post-Print hal-03778525, HAL.
- Klockmann, Victor & von Schenk, Alicia & Villeval, Marie-Claire, 2022. "Artificial intelligence, ethics, and intergenerational responsibility," SAFE Working Paper Series 335, Leibniz Institute for Financial Research SAFE.
- Jean Robert Kala Kamdjoug & Hyacinthe Djanan Sando & Jules Raymond Kala & Arielle Ornela Ndassi Teutio & Sunil Tiwari & Samuel Fosso Wamba, 2024. "Data analytics-based auditing: a case study of fraud detection in the banking context," Annals of Operations Research, Springer, vol. 340(2), pages 1161-1188, September.
- Tianlang Xiong & Zhishuo Ma & Zhuangzhuang Li & Jiangqianyi Dai, 2022. "The analysis of influence mechanism for internet financial fraud identification and user behavior based on machine learning approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 996-1007, December.
- Emanuel Mineda Carneiro & Carlos Henrique Quartucci Forster & Lineu Fernando Stege Mialaret & Luiz Alberto Vieira Dias & Adilson Marques da Cunha, 2022. "High-Cardinality Categorical Attributes and Credit Card Fraud Detection," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
- Aslam, Faheem & Hunjra, Ahmed Imran & Ftiti, Zied & Louhichi, Wael & Shams, Tahira, 2022. "Insurance fraud detection: Evidence from artificial intelligence and machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).
- K. S. Naik, 2021. "Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach," Papers 2110.02206, arXiv.org.
- Bauer, Kevin & Pfeuffer, Nicolas & Abdel-Karim, Benjamin M. & Hinz, Oliver & Kosfeld, Michael, 2020. "The terminator of social welfare? The economic consequences of algorithmic discrimination," SAFE Working Paper Series 287, Leibniz Institute for Financial Research SAFE.
More about this item
Keywords
Credit card fraud; Electronic transactions; Machine learning; Nature-inspired techniques; Cybercriminals;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0551-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.