IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v94y2024ics1059056024004052.html
   My bibliography  Save this article

Crude oil volatility forecasting: Insights from a novel time-varying parameter GARCH-MIDAS model

Author

Listed:
  • Peng, Lijuan
  • Liang, Chao
  • Yang, Baoying
  • Wang, Lu

Abstract

Stationary GARCH-MIDAS models encounter challenges in effectively capturing the dynamic impact of realized volatility on crude oil price volatility. This study introduces a novel time-varying parameter GARCH-MIDAS (TVP-GARCH-MIDAS) model to address these challenges and intricately capture the evolving dynamics between variables. The empirical results underscore the superior precision of the TVP-GARCH-MIDAS model in reflecting the influence of realized volatility on crude oil price volatility over time. In comparison to the stationary GARCH-MIDAS and MS-GARCH-MIDAS models, the proposed model exhibits outstanding out-of-sample forecasting performance and has excellent economic significance. This study provides valuable insights for investors and policy-makers, supporting better risk management and more effective investment strategy formulation.

Suggested Citation

  • Peng, Lijuan & Liang, Chao & Yang, Baoying & Wang, Lu, 2024. "Crude oil volatility forecasting: Insights from a novel time-varying parameter GARCH-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:reveco:v:94:y:2024:i:c:s1059056024004052
    DOI: 10.1016/j.iref.2024.103413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056024004052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2024.103413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    4. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    5. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    6. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    7. Zhang, Yaojie & Ma, Feng & Zhu, Bo, 2019. "Intraday momentum and stock return predictability: Evidence from China," Economic Modelling, Elsevier, vol. 76(C), pages 319-329.
    8. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    11. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
    12. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    13. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    14. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    15. Cai, Zongwu & Ren, Yu & Yang, Bingduo, 2015. "A semiparametric conditional capital asset pricing model," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 117-126.
    16. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    17. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    18. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    19. J. Fan & M. Farmen & I. Gijbels, 1998. "Local maximum likelihood estimation and inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 591-608.
    20. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    21. Feng Ma & Chao Liang & Qing Zeng & Haibo Li, 2021. "Jumps and oil futures volatility forecasting: a new insight," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 853-863, May.
    22. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    23. Peng, Lijuan & Pan, Zhigang & Liang, Chao & Umar, Muhammad, 2023. "Exchange rate volatility predictability: A new insight from climate policy uncertainty," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 688-700.
    24. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    25. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    26. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    27. Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
    28. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    29. Feng Ma & Xinjie Lu & Lu Wang & Julien Chevallier, 2021. "Global economic policy uncertainty and gold futures market volatility: Evidence from Markov regime‐switching GARCH‐MIDAS models," Post-Print halshs-04250272, HAL.
    30. Wolff, Christian C P, 1987. "Time-Varying Parameters and the Out-of-Sample Forecasting Performance of Structural Exchange Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(1), pages 87-97, January.
    31. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    32. Kilian, Lutz & Inoue, Atsushi, 2004. "Bagging Time Series Models," CEPR Discussion Papers 4333, C.E.P.R. Discussion Papers.
    33. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
    34. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    35. Peng, Lijuan & Liang, Chao, 2023. "Sustainable development during the post-COVID-19 period: Role of crude oil," Resources Policy, Elsevier, vol. 85(PA).
    36. Neelabh Rohan & T. V. Ramanathan, 2013. "Nonparametric estimation of a time-varying GARCH model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 33-52, March.
    37. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
    4. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    5. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    6. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    7. Cristina Amado & Annastiina Silvennoinen & Timo Teräsvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," CREATES Research Papers 2018-14, Department of Economics and Business Economics, Aarhus University.
    8. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    9. Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    10. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
    11. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    12. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    13. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    14. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    15. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    16. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    17. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    18. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
    19. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    20. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.

    More about this item

    Keywords

    Crude oil price; GARCH-MIDAS; Volatility forecasting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:94:y:2024:i:c:s1059056024004052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.