IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v25y2013i1p33-52.html
   My bibliography  Save this article

Nonparametric estimation of a time-varying GARCH model

Author

Listed:
  • Neelabh Rohan
  • T. V. Ramanathan

Abstract

In this paper, a non-stationary time-varying GARCH (tvGARCH) model has been introduced by allowing the parameters of a stationary GARCH model to vary as functions of time. It is shown that the tvGARCH process is locally stationary in the sense that it can be locally approximated by stationary GARCH processes at fixed time points. We develop a two-step local polynomial procedure for the estimation of the parameter functions of the proposed model. Several asymptotic properties of the estimators have been established, including the asymptotic optimality. It is found that the tvGARCH model performs better than many of the standard GARCH models for various real data sets.

Suggested Citation

  • Neelabh Rohan & T. V. Ramanathan, 2013. "Nonparametric estimation of a time-varying GARCH model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 33-52, March.
  • Handle: RePEc:taf:gnstxx:v:25:y:2013:i:1:p:33-52
    DOI: 10.1080/10485252.2012.728600
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.728600
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.728600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohan, Neelabh, 2013. "A time varying GARCH(p,q) model and related statistical inference," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1983-1990.
    2. Hajar Nasrazadani & Maria Pilar Mu oz Gracia, 2017. "Comparing Iranian and Spanish Electricity Markets with Nonlinear Time Series," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 262-286.
    3. Rydlewski, Jerzy P. & Snarska, Małgorzata, 2014. "On geometric ergodicity of skewed—SVCHARME models," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 192-197.
    4. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    5. Grigoryeva, Lyudmila & Ortega, Juan-Pablo & Peresetsky, Anatoly, 2018. "Volatility forecasting using global stochastic financial trends extracted from non-synchronous data," Econometrics and Statistics, Elsevier, vol. 5(C), pages 67-82.
    6. Pourkhanali, Armin & Tafakori, Laleh & Bee, Marco, 2023. "Forecasting Value-at-Risk using functional volatility incorporating an exogenous effect," International Review of Financial Analysis, Elsevier, vol. 89(C).
    7. Sayar Karmakar & Arkaprava Roy, 2020. "Bayesian modelling of time-varying conditional heteroscedasticity," Papers 2009.06007, arXiv.org, revised Mar 2021.
    8. Karmakar, Sayar & Richter, Stefan & Wu, Wei Biao, 2022. "Simultaneous inference for time-varying models," Journal of Econometrics, Elsevier, vol. 227(2), pages 408-428.
    9. Yudong Wang & Zhiyuan Pan & Chongfeng Wu, 2017. "Time‐Varying Parameter Realized Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 566-580, August.
    10. Mishra Anuj & Ramanathan Thekke Variyam, 2017. "Nonstationary autoregressive conditional duration models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:25:y:2013:i:1:p:33-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.