IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v91y2018icp600-612.html
   My bibliography  Save this article

Dynamic thermal rating of transmission lines: A review

Author

Listed:
  • Karimi, Soheila
  • Musilek, Petr
  • Knight, Andrew M.

Abstract

Electrical load growth and the addition of renewable energy generation occur at a rate that can outpace transmission development. As a consequence, transmission lines may become constrained. To accommodate load growth or distributed generation connections, one option is to operate existing transmission facilities up to their actual physical capacity rather than a conservative estimate of line capacity. Dynamic thermal rating of transmission lines provides actual current-carrying capacity of overhead lines based on real-time operating conditions. Dynamic Thermal Line Rating (DTLR) approaches vary significantly from one study to another in implementation, objectives and outcomes. Existing literature has presented several methodologies for DTLR adoption. This paper provides a comprehensive study of the literature on DTLR. It presents a survey and evaluation of various DTLR technologies, DTLR equipment, challenges with DTLR deployment, real world applications, and future approaches to DTLR implementation. The presented work is organized to allow a reader to understand and compare various DTLR approaches.

Suggested Citation

  • Karimi, Soheila & Musilek, Petr & Knight, Andrew M., 2018. "Dynamic thermal rating of transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 600-612.
  • Handle: RePEc:eee:rensus:v:91:y:2018:i:c:p:600-612
    DOI: 10.1016/j.rser.2018.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118302119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, Binayak & Jayaweera, Dilan & Islam, Syed, 2015. "Risk constrained short-term scheduling with dynamic line ratings for increased penetration of wind power," Renewable Energy, Elsevier, vol. 83(C), pages 1139-1146.
    2. Michiorri, Andrea & Nguyen, Huu-Minh & Alessandrini, Stefano & Bremnes, John Bjørnar & Dierer, Silke & Ferrero, Enrico & Nygaard, Bjørn-Egil & Pinson, Pierre & Thomaidis, Nikolaos & Uski, Sanna, 2015. "Forecasting for dynamic line rating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1713-1730.
    3. Fernandez, E. & Albizu, I. & Bedialauneta, M.T. & Mazon, A.J. & Leite, P.T., 2016. "Review of dynamic line rating systems for wind power integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 80-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamsul Fahmi Mohd Nor & Mohd Zainal Abidin Ab Kadir & Azrul Mohd Ariffin & Miszaina Osman & Muhammad Syahmi Abd Rahman & Noorlina Mohd Zainuddin, 2021. "Issues and Challenges in Voltage Uprating for Sustainable Power Operation: A Case Study of a 132 kV Transmission Line System in Malaysia," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    2. Glaum, Philipp & Hofmann, Fabian, 2023. "Leveraging the existing German transmission grid with dynamic line rating," Applied Energy, Elsevier, vol. 343(C).
    3. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Riba, Jordi-Roger & Santiago Bogarra, & Gómez-Pau, Álvaro & Moreno-Eguilaz, Manuel, 2020. "Uprating of transmission lines by means of HTLS conductors for a sustainable growth: Challenges, opportunities, and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. F. Gülşen Erdinç & Ozan Erdinç & Recep Yumurtacı & João P. S. Catalão, 2020. "A Comprehensive Overview of Dynamic Line Rating Combined with Other Flexibility Options from an Operational Point of View," Energies, MDPI, vol. 13(24), pages 1-30, December.
    6. Abedi, Amin & Romerio, Franco, 2020. "Multi-period vulnerability analysis of power grids under multiple outages: An AC-based bilevel optimization approach," International Journal of Critical Infrastructure Protection, Elsevier, vol. 30(C).
    7. Diana Enescu & Pietro Colella & Angela Russo & Radu Florin Porumb & George Calin Seritan, 2021. "Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables," Energies, MDPI, vol. 14(9), pages 1-23, May.
    8. Levente Rácz & Bálint Németh & Gábor Göcsei & Dimitar Zarchev & Valeri Mladenov, 2022. "Performance Analysis of a Dynamic Line Rating System Based on Project Experiences," Energies, MDPI, vol. 15(3), pages 1-11, January.
    9. Gian Marco Paldino & Fabrizio De Caro & Jacopo De Stefani & Alfredo Vaccaro & Domenico Villacci & Gianluca Bontempi, 2022. "A Digital Twin Approach for Improving Estimation Accuracy in Dynamic Thermal Rating of Transmission Lines," Energies, MDPI, vol. 15(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Tyler & DeLeon, Rey & Senocak, Inanc, 2017. "Dynamic rating of overhead transmission lines over complex terrain using a large-eddy simulation paradigm," Renewable Energy, Elsevier, vol. 108(C), pages 380-389.
    2. F. Gülşen Erdinç & Ozan Erdinç & Recep Yumurtacı & João P. S. Catalão, 2020. "A Comprehensive Overview of Dynamic Line Rating Combined with Other Flexibility Options from an Operational Point of View," Energies, MDPI, vol. 13(24), pages 1-30, December.
    3. Romain Dupin & Laura Cavalcante & Ricardo J. Bessa & Georges Kariniotakis & Andrea Michiorri, 2020. "Extreme Quantiles Dynamic Line Rating Forecasts and Application on Network Operation," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Glaum, Philipp & Hofmann, Fabian, 2023. "Leveraging the existing German transmission grid with dynamic line rating," Applied Energy, Elsevier, vol. 343(C).
    5. Brooks, Adria E. & Lesieutre, Bernard C., 2022. "A locational marginal price for frequency balancing operations in regulation markets," Applied Energy, Elsevier, vol. 308(C).
    6. Bracale, Antonio & Carpinelli, Guido & De Falco, Pasquale, 2017. "A new finite mixture distribution and its expectation-maximization procedure for extreme wind speed characterization," Renewable Energy, Elsevier, vol. 113(C), pages 1366-1377.
    7. Math H. J. Bollen & Sarah K. Rönnberg, 2017. "Hosting Capacity of the Power Grid for Renewable Electricity Production and New Large Consumption Equipment," Energies, MDPI, vol. 10(9), pages 1-28, September.
    8. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    9. José Agüero-Rubio & Javier López-Martínez & Marta Gómez-Galán & Ángel-Jesús Callejón-Ferre, 2020. "A Didactic Procedure to Solve the Equation of Steady-Static Response in Suspended Cables," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    10. Zhao Liu & Honglei Deng & Ruidong Peng & Xiangyang Peng & Rui Wang & Wencheng Zheng & Pengyu Wang & Deming Guo & Gang Liu, 2020. "An Equivalent Heat Transfer Model Instead of Wind Speed Measuring for Dynamic Thermal Rating of Transmission Lines," Energies, MDPI, vol. 13(18), pages 1-18, September.
    11. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Pinto, Mauro S.S. & Miranda, Vladimiro & Saavedra, Osvaldo R., 2016. "Risk and unit commitment decisions in scenarios of wind power uncertainty," Renewable Energy, Elsevier, vol. 97(C), pages 550-558.
    13. Aouss Gabash, 2023. "Energy Market Transition and Climate Change: A Review of TSOs-DSOs C+++ Framework from 1800 to Present," Energies, MDPI, vol. 16(17), pages 1-24, August.
    14. Fan Song & Yanling Wang & Hongbo Yan & Xiaofeng Zhou & Zhiqiang Niu, 2019. "Increasing the Utilization of Transmission Lines Capacity by Quasi-Dynamic Thermal Ratings," Energies, MDPI, vol. 12(5), pages 1-13, February.
    15. Akhlaghi, M. & Moravej, Z. & Bagheri, A., 2022. "Maximizing wind energy utilization in smart power systems using a flexible network-constrained unit commitment through dynamic lines and transformers rating," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:91:y:2018:i:c:p:600-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.