IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6139-d1223398.html
   My bibliography  Save this article

Energy Market Transition and Climate Change: A Review of TSOs-DSOs C+++ Framework from 1800 to Present

Author

Listed:
  • Aouss Gabash

    (Department of Automation Engineering, Institute of Automation and Systems Engineering, Technical University of Ilmenau, 98693 Ilmenau, Germany)

Abstract

In response to the pressing global challenges around climate change and the imperative of transitioning the energy market towards sustainability, this paper presents a comprehensive review starting from the late 18th century. The study examines the pivotal role of Transmission System Operators (TSOs) and Distribution System Operators (DSOs) in shaping the evolving energy landscape, with a specific emphasis on the C+++ Framework. This framework emphasizes coordination, cooperation, and collaboration between TSOs and DSOs to achieve sustainable energy systems through the integration of renewable energy technologies, storage systems, and efficient energy demand management. In addition, the review provides a historical overview of global warming from 1800 to the present, highlighting key events and developments related to greenhouse gas emissions. Furthermore, the paper delves into the significance of international agreements such as the Paris Agreement and the importance of reducing greenhouse gas emissions for a sustainable future. Recognizing the vital role of the C+++ Framework, the paper concludes with a discussion of future hybrid sustainable technologies incorporating various storage and efficient lighting technologies that can optimize energy management and reduce carbon emissions. This research aims to contribute valuable insights to inform energy policy and decision-making processes for a reliable, efficient, and sustainable energy delivery system.

Suggested Citation

  • Aouss Gabash, 2023. "Energy Market Transition and Climate Change: A Review of TSOs-DSOs C+++ Framework from 1800 to Present," Energies, MDPI, vol. 16(17), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6139-:d:1223398
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khojasteh, Meysam & Faria, Pedro & Lezama, Fernando & Vale, Zita, 2023. "A hierarchy model to use local resources by DSO and TSO in the balancing market," Energy, Elsevier, vol. 267(C).
    2. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations," Energies, MDPI, vol. 9(3), pages 1-12, February.
    3. Fernandez, E. & Albizu, I. & Bedialauneta, M.T. & Mazon, A.J. & Leite, P.T., 2016. "Review of dynamic line rating systems for wind power integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 80-92.
    4. Maloni, Michael J. & Benton, W.C., 1997. "Supply chain partnerships: Opportunities for operations research," European Journal of Operational Research, Elsevier, vol. 101(3), pages 419-429, September.
    5. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    6. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    7. Akorede, M.F. & Hizam, H. & Ab Kadir, M.Z.A. & Aris, I. & Buba, S.D., 2012. "Mitigating the anthropogenic global warming in the electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2747-2761.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijay, Rohit & Mathuria, Parul, 2024. "Common TSO-DSO market framework with no upfront priority to utilize DER flexibility," Energy, Elsevier, vol. 299(C).
    2. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    3. Jiang, Tao & Wu, Chenghao & Huang, Tao & Zhang, Rufeng & Li, Xue, 2024. "Optimal market participation of VPPs in TSO-DSO coordinated energy and flexibility markets," Applied Energy, Elsevier, vol. 360(C).
    4. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    5. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    6. Monideepa Tarafdar & Sufian Qrunfleh, 2017. "Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 925-938, February.
    7. Lukas, Elmar & Welling, Andreas, 2017. "Efficient non-cooperative bargaining despite keeping strategic information private," Journal of Corporate Finance, Elsevier, vol. 42(C), pages 287-294.
    8. Theo Dronne & Fabien Roques & Marcelo Saguan, 2021. "Local Flexibility Markets for Distribution Network Congestion-Management in Center-Western Europe: Which Design for Which Needs?," Energies, MDPI, vol. 14(14), pages 1-18, July.
    9. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    10. Cong Liu & Jingyang Zhou & Yi Pan & Zhiyi Li & Yifei Wang & Dan Xu & Qiang Ding & Zhiqiang Luo & Mohammad Shahidehpour, 2019. "Multi-period Market Operation of Transmission-Distribution Systems Based on Heterogeneous Decomposition and Coordination," Energies, MDPI, vol. 12(16), pages 1-20, August.
    11. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    12. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    13. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    14. Alessandro Ciocia & Angela Amato & Paolo Di Leo & Stefania Fichera & Gabriele Malgaroli & Filippo Spertino & Slavka Tzanova, 2021. "Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation," Energies, MDPI, vol. 14(6), pages 1-24, March.
    15. Vera Belaya & Jon Henrich Hanf, 2016. "The dark and the bright side of power: implications for the management of business-to-business relationships," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-17, December.
    16. Ricardo Silva & Everton Alves & Ricardo Ferreira & José Villar & Clara Gouveia, 2021. "Characterization of TSO and DSO Grid System Services and TSO-DSO Basic Coordination Mechanisms in the Current Decarbonization Context," Energies, MDPI, vol. 14(15), pages 1-30, July.
    17. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    18. Tianlei Zang & Shijun Wang & Zian Wang & Chuangzhi Li & Yunfei Liu & Yujian Xiao & Buxiang Zhou, 2024. "Integrated Planning and Operation Dispatching of Source–Grid–Load–Storage in a New Power System: A Coupled Socio–Cyber–Physical Perspective," Energies, MDPI, vol. 17(12), pages 1-43, June.
    19. Luca Mendicino & Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza & Claudio Alberti & Francesco Dura, 2021. "DSO Flexibility Market Framework for Renewable Energy Community of Nanogrids," Energies, MDPI, vol. 14(12), pages 1-19, June.
    20. Neuhoff, Karsten & Richstein, Jörn, 2017. "TSO-DSO-PX Cooperation. Report on the key elements of debate from a workshop of the Future Power Market Platform," EconStor Research Reports 167313, ZBW - Leibniz Information Centre for Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6139-:d:1223398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.