IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i9p3531-3543.html
   My bibliography  Save this article

Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States

Author

Listed:
  • Denholm, Paul
  • Margolis, Robert M.

Abstract

In this report, we estimate the state-by-state per-capita "solar electric footprint" for the United States, defined as the land area required to supply all end-use electricity from solar photovoltaics (PV). We find that the overall average solar electric footprint is about 181Â m2 per person in a base case scenario, with a state- and scenario-dependant range from about 50 to over 450Â m2 per person. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). We also compare the solar electric footprint to a number of other land uses. For example, we find that the base case solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States, and less than the current amount of land used for corn ethanol production.

Suggested Citation

  • Denholm, Paul & Margolis, Robert M., 2008. "Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States," Energy Policy, Elsevier, vol. 36(9), pages 3531-3543, September.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:9:p:3531-3543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00279-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    2. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    2. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    3. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement," Energy Policy, Elsevier, vol. 48(C), pages 479-486.
    4. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    5. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    6. Breyer, Christian & Birkner, Christian & Meiss, Jan & Goldschmidt, Jan Christoph & Riede, Moritz, 2013. "A top-down analysis: Determining photovoltaics R&D investments from patent analysis and R&D headcount," Energy Policy, Elsevier, vol. 62(C), pages 1570-1580.
    7. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    8. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    9. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    10. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    11. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    12. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
    13. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "Grid matching of large-scale wind energy conversion systems, alone and in tandem with large-scale photovoltaic systems: An Israeli case study," Energy Policy, Elsevier, vol. 38(11), pages 7070-7081, November.
    14. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    15. Esposto, Stefano, 2008. "The possible role of nuclear energy in Italy," Energy Policy, Elsevier, vol. 36(5), pages 1584-1588, May.
    16. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    17. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    18. Fattori, Fabrizio & Anglani, Norma & Staffell, Iain & Pfenninger, Stefan, 2017. "High solar photovoltaic penetration in the absence of substantial wind capacity: Storage requirements and effects on capacity adequacy," Energy, Elsevier, vol. 137(C), pages 193-208.
    19. Guillermo Valencia Ochoa & Jose Nunez Alvarez & Carlos Acevedo, 2019. "Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal, Wind and Biomass Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 242-253.
    20. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:9:p:3531-3543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.