IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i6p4126-4140.html
   My bibliography  Save this article

Future perspectives on sustainable tribology

Author

Listed:
  • Tzanakis, I.
  • Hadfield, M.
  • Thomas, B.
  • Noya, S.M.
  • Henshaw, I.
  • Austen, S.

Abstract

This paper highlights the future perspectives of sustainable tribology by examining the economic, environmental and social impact of three tribological case studies. One case study examines the sustainability and durability of micro-CHP systems looking the tribological phenomena generated within a scroll expander system. The scroll is the main part of a specific micro-CHP system and experiences wear and cavitation damage. The tribological optimization of the scroll expander improves the sustainability of the micro-CHP unit while it has a serious economic and environmental impact to the consumers and to the society in general. Another case study is focused on friction and wear performance of lifeboat launch slipways. The causes of high friction and wear during the RNLI's lifeboat launches along an inclined slipway are investigated with a view to reducing the environmental impact due to slipway panel wear and lubricant release into the marine environment. The project encompasses the sustainable design of slipway panels using design modifications based on tribological investigations to double their lifespan, while environmental and economic impact was significantly reduced by the use of biodegradable greases and water as lubricants. The final case study involves an investigation of recycled plastic materials to replace polyurethane used on skateboard wheels, scooters and similar applications. Polyurethane (PU) is difficult to recycle. With the dwindling resources and environmental problems facing the world today, recycling for both waste reduction and resource preservation has become an increasingly important aspect of sustainability. The tribological results showed that recycled polycarbonate plastic can effectively act as a substitute to polyurethane wheels. Moreover, sustainability considerations showing the environmental benefits of the use of recycled plastics over PU include reducing the CO2 footprint by 50% and the energy consumed by 60%, among other benefits. These case studies emphasise the importance of sustainable tribology in our epoch showing that increased sustainability performance can be achieved through tribology to a significant extent in many cases, providing stability to our world and more viable long term growth to our societies.

Suggested Citation

  • Tzanakis, I. & Hadfield, M. & Thomas, B. & Noya, S.M. & Henshaw, I. & Austen, S., 2012. "Future perspectives on sustainable tribology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4126-4140.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:6:p:4126-4140
    DOI: 10.1016/j.rser.2012.02.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211200158X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.02.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Kane, M. & Larrain, D. & Favrat, D. & Allani, Y., 2003. "Small hybrid solar power system," Energy, Elsevier, vol. 28(14), pages 1427-1443.
    4. Haralambopoulos, D.A. & Polatidis, H., 2003. "Renewable energy projects: structuring a multi-criteria group decision-making framework," Renewable Energy, Elsevier, vol. 28(6), pages 961-973.
    5. Alanne, Kari & Saari, Arto, 2004. "Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 401-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nketiah, Emmanuel & Song, Huaming & Adu-Gyamfi, Gibbson & Obuobi, Bright & Adjei, Mavis & Cudjoe, Dan, 2022. "Does government involvement and awareness of benefit affect Ghanaian's willingness to pay for renewable green electricity?," Renewable Energy, Elsevier, vol. 197(C), pages 683-694.
    2. Yazdanpanah, Masoud & Komendantova, Nadejda & Ardestani, Roshanak Shafiei, 2015. "Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 565-573.
    3. Mannekote, Jagadeesh K. & Kailas, Satish V. & Venkatesh, K. & Kathyayini, N., 2018. "Environmentally friendly functional fluids from renewable and sustainable sources-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1787-1801.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Hye-Won & Jeong, Jae-Weon, 2020. "Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system," Renewable Energy, Elsevier, vol. 147(P1), pages 2358-2373.
    2. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    3. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2013. "Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions," Applied Energy, Elsevier, vol. 106(C), pages 355-364.
    4. Antonelli, M. & Baccioli, A. & Francesconi, M. & Desideri, U. & Martorano, L., 2015. "Electrical production of a small size Concentrated Solar Power plant with compound parabolic collectors," Renewable Energy, Elsevier, vol. 83(C), pages 1110-1118.
    5. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    6. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2012. "Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications," Applied Energy, Elsevier, vol. 97(C), pages 792-801.
    7. Zheng, N. & Zhao, L. & Wang, X.D. & Tan, Y.T., 2013. "Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle," Applied Energy, Elsevier, vol. 112(C), pages 1265-1274.
    8. Szántó, Richárd, 2012. "Több szempontú részvételi döntések a fenntarthatósági értékelésekben. A legnépszerűbb módszerek összehasonlítása [Participatory multi-criteria decision analysis. A comparison of methodologies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1336-1355.
    9. Bracco, Roberto & Clemente, Stefano & Micheli, Diego & Reini, Mauro, 2013. "Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle)," Energy, Elsevier, vol. 58(C), pages 107-116.
    10. Ferrara, G. & Manfrida, G. & Pescioni, A., 2013. "Model of a small steam engine for renewable domestic CHP (combined heat and power) system," Energy, Elsevier, vol. 58(C), pages 78-85.
    11. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    12. Cavallaro, Fausto, 2010. "A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method," Energy Policy, Elsevier, vol. 38(1), pages 463-474, January.
    13. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    14. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    15. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    16. Kosmadakis, George & Landelle, Arnaud & Lazova, Marija & Manolakos, Dimitris & Kaya, Alihan & Huisseune, Henk & Karavas, Christos-Spyridon & Tauveron, Nicolas & Revellin, Remi & Haberschill, Philippe , 2016. "Experimental testing of a low-temperature organic Rankine cycle (ORC) engine coupled with concentrating PV/thermal collectors: Laboratory and field tests," Energy, Elsevier, vol. 117(P1), pages 222-236.
    17. Wang, Hailei & Peterson, Richard & Herron, Tom, 2011. "Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle)," Energy, Elsevier, vol. 36(8), pages 4809-4820.
    18. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    19. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    20. Pei, Gang & Li, Jing & Li, Yunzhu & Wang, Dongyue & Ji, Jie, 2011. "Construction and dynamic test of a small-scale organic rankine cycle," Energy, Elsevier, vol. 36(5), pages 3215-3223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:6:p:4126-4140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.