IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip1p306-312.html
   My bibliography  Save this article

Short-term forecast of generation of electric energy in photovoltaic systems

Author

Listed:
  • Bugała, A.
  • Zaborowicz, M.
  • Boniecki, P.
  • Janczak, D.
  • Koszela, K.
  • Czekała, W.
  • Lewicki, A.

Abstract

The paper presents the use of classical statistical methods and methods based on neural modeling in short-term forecasting of electric energy from photovoltaic conversion. A detailed analysis of the input data measured in central Poland (Poznań, 52°25′ N, 16°56′ E) showed that some variables like air pressure and the length of the day are statistically insignificant. The values of kurtosis, skewness and results of applied tests, to check the normality of the distribution of dependent variable in the form of daily electricity production, indicate that the linear regression models should not be the only method in forecast process. The result of neural modeling using implemented network designer is RBF 6: 6-5-1: 1 model with quality test approximately 93% and the RMS error of 0.02%. The input parameters necessary for the operation of proposed ANN model are: number of sunny hours, length of the day, air pressure, maximum air temperature, daily insolation and cloudiness.

Suggested Citation

  • Bugała, A. & Zaborowicz, M. & Boniecki, P. & Janczak, D. & Koszela, K. & Czekała, W. & Lewicki, A., 2018. "Short-term forecast of generation of electric energy in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 306-312.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:306-312
    DOI: 10.1016/j.rser.2017.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117311012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    2. Gunasekar, N. & Mohanraj, M. & Velmurugan, V., 2015. "Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps," Energy, Elsevier, vol. 93(P1), pages 908-922.
    3. Dahmani, Kahina & Dizene, Rabah & Notton, Gilles & Paoli, Christophe & Voyant, Cyril & Nivet, Marie Laure, 2014. "Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model," Energy, Elsevier, vol. 70(C), pages 374-381.
    4. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    5. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    6. Punitha, K. & Devaraj, D. & Sakthivel, S., 2013. "Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 62(C), pages 330-340.
    7. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2015. "Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1093-1106.
    8. Hernández, Luis & Baladrón, Carlos & Aguiar, Javier M. & Carro, Belén & Sánchez-Esguevillas, Antonio & Lloret, Jaime, 2014. "Artificial neural networks for short-term load forecasting in microgrids environment," Energy, Elsevier, vol. 75(C), pages 252-264.
    9. Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
    10. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Lorena Calavia & Belén Carro & Antonio Sánchez-Esguevillas & Francisco Pérez & Ángel Fernández & Jaime Lloret, 2014. "Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems," Energies, MDPI, vol. 7(3), pages 1-23, March.
    11. Kashyap, Yashwant & Bansal, Ankit & Sao, Anil K., 2015. "Solar radiation forecasting with multiple parameters neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 825-835.
    12. Gairaa, Kacem & Khellaf, Abdallah & Messlem, Youcef & Chellali, Farouk, 2016. "Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 238-249.
    13. Dach, J. & Koszela, K. & Boniecki, P. & Zaborowicz, M. & Lewicki, A. & Czekała, W. & Skwarcz, J. & Qiao, Wei & Piekarska-Boniecka, H. & Białobrzewski, I., 2016. "The use of neural modelling to estimate the methane production from slurry fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 603-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Sadegh Amalnick & Naser Habibifar & Mahdi Hamid & Mahdi Bastan, 2020. "An intelligent algorithm for final product demand forecasting in pharmaceutical units," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 481-493, April.
    2. Yin, Wansi & Han, Yutong & Zhou, Hai & Ma, Ming & Li, Li & Zhu, Honglu, 2020. "A novel non-iterative correction method for short-term photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 159(C), pages 23-32.
    3. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    4. Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
    5. Dorota Bugała & Artur Bugała & Wojciech Machczyński, 2021. "Simulation of the Immunity Test of a Photovoltaic System Disturbed by Electromagnetic Voltage Surge," Energies, MDPI, vol. 14(12), pages 1-22, June.
    6. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    7. Grzegorz Trzmiel & Jaroslaw Jajczyk & Ewa Kardas-Cinal & Norbert Chamier-Gliszczynski & Waldemar Wozniak & Konrad Lewczuk, 2021. "The Condition of Photovoltaic Modules under Random Operation Parameters," Energies, MDPI, vol. 14(24), pages 1-18, December.
    8. Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
    9. Jakub Frankowski & Maciej Zaborowicz & Jacek Dach & Wojciech Czekała & Jacek Przybył, 2020. "Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Dee," Energies, MDPI, vol. 13(11), pages 1-15, June.
    10. Hyung Keun Ahn & Neungsoo Park, 2021. "Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors," Energies, MDPI, vol. 14(2), pages 1-17, January.
    11. Eduardo Quiles & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Carlos Roldán-Porta, 2020. "Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability," Sustainability, MDPI, vol. 12(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed El-Hendawi & Hossam A. Gabbar & Gaber El-Saady & El-Nobi A. Ibrahim, 2018. "Control and EMS of a Grid-Connected Microgrid with Economical Analysis," Energies, MDPI, vol. 11(1), pages 1-20, January.
    2. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    3. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    4. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    5. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    6. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    7. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    8. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Hu, Bo & Gong, Wei, 2016. "Modeling and comparison of hourly photosynthetically active radiation in different ecosystems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 436-453.
    9. Wang, Bin & Wang, Jun, 2021. "Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and RIF-based algorithm," Energy, Elsevier, vol. 216(C).
    10. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    11. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    12. Happy Aprillia & Hong-Tzer Yang & Chao-Ming Huang, 2019. "Optimal Decomposition and Reconstruction of Discrete Wavelet Transformation for Short-Term Load Forecasting," Energies, MDPI, vol. 12(24), pages 1-23, December.
    13. Tansu Filik, 2016. "Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(3), pages 1-15, March.
    14. Singh, Priyanka & Dwivedi, Pragya & Kant, Vibhor, 2019. "A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting," Energy, Elsevier, vol. 174(C), pages 460-477.
    15. Damilola Elizabeth Babatunde & Ambrose Anozie & James Omoleye, 2020. "Artificial Neural Network and its Applications in the Energy Sector An Overview," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 250-264.
    16. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    17. Karimi, M. & Karami, H. & Gholami, M. & Khatibzadehazad, H. & Moslemi, N., 2018. "Priority index considering temperature and date proximity for selection of similar days in knowledge-based short term load forecasting method," Energy, Elsevier, vol. 144(C), pages 928-940.
    18. Baris Yuce & Monjur Mourshed & Yacine Rezgui, 2017. "A Smart Forecasting Approach to District Energy Management," Energies, MDPI, vol. 10(8), pages 1-22, July.
    19. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac & Valentin A. Boicea, 2021. "Short-Term Load Forecasting Using Convolutional Neural Networks in COVID-19 Context: The Romanian Case Study," Energies, MDPI, vol. 14(13), pages 1-19, July.
    20. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:306-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.