IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v62y2013icp330-340.html
   My bibliography  Save this article

Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions

Author

Listed:
  • Punitha, K.
  • Devaraj, D.
  • Sakthivel, S.

Abstract

In solar PV (photovoltaic) system, tracking the module's MPP (maximum power point) is challenging due to varying climatic conditions. Moreover, the tracking algorithm becomes more complicated under the condition of partial shading due to the presence of multiple peaks in the power voltage characteristics. This paper presents a NN (neural network) based modified IC (incremental conductance) algorithm for MPPT (maximum power point tracking) in PV system. The PV system along with the proposed MPPT algorithm was simulated using Matlab/Simulink simscape tool box. The simulated system was evaluated under uniform and non-uniform irradiation conditions and the results are presented. For comparison, P&O (perturb and observe) and Fuzzy based Modified Hill Climbing algorithms were used for MPP tracking, and the results show that the proposed approach is effective in tracking the MPP under partial shading conditions. To validate the simulated system hardware implementation of the proposed algorithm was carried out using FPGA (Field Programmable Gate Array).

Suggested Citation

  • Punitha, K. & Devaraj, D. & Sakthivel, S., 2013. "Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 62(C), pages 330-340.
  • Handle: RePEc:eee:energy:v:62:y:2013:i:c:p:330-340
    DOI: 10.1016/j.energy.2013.08.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300697X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2007. "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," Renewable Energy, Elsevier, vol. 32(2), pages 285-313.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    2. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive decoupled control of 4-leg voltage-source inverters for standalone photovoltaic systems: Adjusting transient state response," Renewable Energy, Elsevier, vol. 36(10), pages 2733-2741.
    3. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    4. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    5. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    6. Dimri, Neha & Tiwari, Arvind & Tiwari, G.N., 2019. "Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors," Renewable Energy, Elsevier, vol. 134(C), pages 343-356.
    7. Zhengping Liu & Wang Zhang & Hongxian Liu & Guohe Huang & Jiliang Zhen & Xin Qi, 2019. "Characterization of Renewable Energy Utilization Mode for Air-Environmental Quality Improvement through an Inexact Factorial Optimization Approach," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    8. Sozen, Adnan & Gulseven, Zafer & Arcaklioglu, Erol, 2007. "Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies," Energy Policy, Elsevier, vol. 35(12), pages 6491-6505, December.
    9. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    10. Matos, Fernando B. & Camacho, José R. & Rodrigues, Pollyanna & Guimarães Jr., Sebastião C., 2011. "A research on the use of energy resources in the Amazon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3196-3206, August.
    11. Himri, Y. & Malik, Arif S. & Boudghene Stambouli, A. & Himri, S. & Draoui, B., 2009. "Review and use of the Algerian renewable energy for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1584-1591, August.
    12. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    13. Wang, Gang & Zhao, Ke & Shi, Jiangtao & Chen, Wei & Zhang, Haiyang & Yang, Xinsheng & Zhao, Yong, 2017. "An iterative approach for modeling photovoltaic modules without implicit equations," Applied Energy, Elsevier, vol. 202(C), pages 189-198.
    14. Wang, Gang & Zhao, Ke & Qiu, Tian & Yang, Xinsheng & Zhang, Yong & Zhao, Yong, 2016. "The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules," Energy, Elsevier, vol. 115(P1), pages 478-485.
    15. Caresana, F. & Pelagalli, L. & Comodi, G. & Renzi, M., 2014. "Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior," Applied Energy, Elsevier, vol. 124(C), pages 17-27.
    16. Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
    17. Casares, F.J. & Lopez-Luque, R. & Posadillo, R. & Varo-Martinez, M., 2014. "Mathematical approach to the characterization of daily energy balance in autonomous photovoltaic solar systems," Energy, Elsevier, vol. 72(C), pages 393-404.
    18. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    19. Kwon, Sunghoon & Won, Wangyun & Kim, Jiyong, 2016. "A superstructure model of an isolated power supply system using renewable energy: Development and application to Jeju Island, Korea," Renewable Energy, Elsevier, vol. 97(C), pages 177-188.
    20. Zagouras, Athanassios & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "On the role of lagged exogenous variables and spatio–temporal correlations in improving the accuracy of solar forecasting methods," Renewable Energy, Elsevier, vol. 78(C), pages 203-218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:62:y:2013:i:c:p:330-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.