Stochastic modeling to represent wind power generation and demand in electric power system based on real data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.04.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zárate-Miñano, Rafael & Anghel, Marian & Milano, Federico, 2013. "Continuous wind speed models based on stochastic differential equations," Applied Energy, Elsevier, vol. 104(C), pages 42-49.
- Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
- De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Error analysis of short term wind power prediction models," Applied Energy, Elsevier, vol. 88(4), pages 1298-1311, April.
- Bujosa, Marcos & Garcia-Ferrer, Antonio & Young, Peter C., 2007. "Linear dynamic harmonic regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 999-1024, October.
- McLoughlin, Fintan & Duffy, Aidan & Conlon, Michael, 2013. "Evaluation of time series techniques to characterise domestic electricity demand," Energy, Elsevier, vol. 50(C), pages 120-130.
- Dilaver, Zafer & Hunt, Lester C., 2011.
"Industrial electricity demand for Turkey: A structural time series analysis,"
Energy Economics, Elsevier, vol. 33(3), pages 426-436, May.
- Zafer Dilaver & Lester C Hunt, 2010. "Industrial Electricity Demand for Turkey: A Structural Time Series Analysis," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 129, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
- Song, Zhe & Jiang, Yu & Zhang, Zijun, 2014. "Short-term wind speed forecasting with Markov-switching model," Applied Energy, Elsevier, vol. 130(C), pages 103-112.
- Calif, Rudy, 2012. "PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation," Applied Energy, Elsevier, vol. 99(C), pages 173-182.
- Erdogdu, Erkan, 2007.
"Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey,"
Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
- Erdogdu, Erkan, 2007. "Electricity Demand Analysis Using Cointegration and ARIMA Modelling: A case study of Turkey," MPRA Paper 19099, University Library of Munich, Germany.
- Kialashaki, Arash & Reisel, John R., 2013. "Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks," Applied Energy, Elsevier, vol. 108(C), pages 271-280.
- Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
- Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
- Zuluaga, Carlos D. & Álvarez, Mauricio A. & Giraldo, Eduardo, 2015. "Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison," Applied Energy, Elsevier, vol. 156(C), pages 321-330.
- Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
- Hagspiel, Simeon & Papaemannouil, Antonis & Schmid, Matthias & Andersson, Göran, 2012. "Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid," Applied Energy, Elsevier, vol. 96(C), pages 33-44.
- Bouzgou, Hassen & Benoudjit, Nabil, 2011. "Multiple architecture system for wind speed prediction," Applied Energy, Elsevier, vol. 88(7), pages 2463-2471, July.
- Fuks, Mauricio & Salazar, Esther, 2008. "Applying models for ordinal logistic regression to the analysis of household electricity consumption classes in Rio de Janeiro, Brazil," Energy Economics, Elsevier, vol. 30(4), pages 1672-1692, July.
- Cadenas, Erasmo & Rivera, Wilfrido, 2007. "Wind speed forecasting in the South Coast of Oaxaca, México," Renewable Energy, Elsevier, vol. 32(12), pages 2116-2128.
- Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jeffrey Eiyike & Dario Bauso, 2018. "Aggregate Wind Power Production via Coalitional Games and Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 289-303, July.
- Maurizio Fantauzzi & Davide Lauria & Fabio Mottola & Daniela Proto, 2021. "Estimating Wind Farm Transformers Rating through Lifetime Characterization Based on Stochastic Modeling of Wind Power," Energies, MDPI, vol. 14(5), pages 1-16, March.
- Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
- Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
- Verdejo, Humberto & Awerkin, Almendra & Becker, Cristhian & Olguin, Gabriel, 2017. "Statistic linear parametric techniques for residential electric energy demand forecasting. A review and an implementation to Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 512-521.
- Usman Zafar & Neil Kellard & Dmitri Vinogradov, 2022. "Multistage optimization filter for trend‐based short‐term forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 345-360, March.
- Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
- Loukatou, Angeliki & Howell, Sydney & Johnson, Paul & Duck, Peter, 2018. "Stochastic wind speed modelling for estimation of expected wind power output," Applied Energy, Elsevier, vol. 228(C), pages 1328-1340.
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.
- Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
- Tao, Laifa & Ma, Jian & Cheng, Yujie & Noktehdan, Azadeh & Chong, Jin & Lu, Chen, 2017. "A review of stochastic battery models and health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 716-732.
- Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
- Loukatou, Angeliki & Johnson, Paul & Howell, Sydney & Duck, Peter, 2021. "Optimal valuation of wind energy projects co-located with battery storage," Applied Energy, Elsevier, vol. 283(C).
- Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
- Jónsdóttir, Guðrún Margrét & Milano, Federico, 2019. "Data-based continuous wind speed models with arbitrary probability distribution and autocorrelation," Renewable Energy, Elsevier, vol. 143(C), pages 368-376.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Verdejo, Humberto & Awerkin, Almendra & Becker, Cristhian & Olguin, Gabriel, 2017. "Statistic linear parametric techniques for residential electric energy demand forecasting. A review and an implementation to Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 512-521.
- Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
- Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
- Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Drisya, G.V. & Asokan, K. & Kumar, K. Satheesh, 2018. "Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations," Renewable Energy, Elsevier, vol. 119(C), pages 540-550.
- Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
- Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
- Liu, Hui & Duan, Zhu & Li, Yanfei & Lu, Haibo, 2018. "A novel ensemble model of different mother wavelets for wind speed multi-step forecasting," Applied Energy, Elsevier, vol. 228(C), pages 1783-1800.
- Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing, 2017. "Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction," Renewable Energy, Elsevier, vol. 113(C), pages 1345-1358.
- Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
- Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
- Hu, Rui & Hu, Weihao & Gökmen, Nuri & Li, Pengfei & Huang, Qi & Chen, Zhe, 2019. "High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map," Renewable Energy, Elsevier, vol. 140(C), pages 17-31.
- Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Jung, Sungmoon & Kwon, Soon-Duck, 2013. "Weighted error functions in artificial neural networks for improved wind energy potential estimation," Applied Energy, Elsevier, vol. 111(C), pages 778-790.
- Li, Chaoshun & Xiao, Zhengguang & Xia, Xin & Zou, Wen & Zhang, Chu, 2018. "A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 131-144.
- Emeksiz, Cem & Tan, Mustafa, 2022. "Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)," Energy, Elsevier, vol. 249(C).
- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
More about this item
Keywords
Stochastic systems; Power systems; Estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:283-295. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.