IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp585-601.html
   My bibliography  Save this article

Factors affecting the efficiency of a water splitting photocatalyst: A perspective

Author

Listed:
  • Gupta, Narendra M.

Abstract

To design an efficient photocatalyst (PC) for semiconductor (SC)-mediated, solar-driven water dissociation to generate hydrogen, a host of strategies has been adopted, including the fabrication of semiconductor composites, substitution of impurities for achieving extended absorbance, and coating with a metal to promote charge transfer. Despite these efforts, a photocatalyst exhibiting requisite efficiency has not been developed. This article reviews the factors governing the water splitting photoactivity of an SC material, and provides an account of our recent research on this subject. As per our investigations, the mode of adsorption of the water molecules on the semiconductor surface and their subsequent interaction with the charge carriers play a crucial role in the overall performance of a water splitting photocatalyst, rather than the much-discussed SC→SC or SC→metal charge transfer effects alone. The water–to-SC binding is controlled by a combination of several physicochemical properties of a composite PC, such as the preparation-dependent grain morphology, doping-affected grain nucleation, pore structure-dependent water adsorption/desorption kinetics, exposure of specific facets, and SC/SC or SC/metal interfacial characteristics. Our studies revealed strong particle size dependence and the facet-based sensitivity of modified metal sulfide and metal oxide photocatalysts. Additionally, the effect of lattice impurity on quantum efficiency of wide gap metal oxides, such as TiO2, In2TiO5, InVO4, FeNbO4, GaNbO4, GaFeO3, and LaInO3, is related to the lattice-defect-induced intra-bandgap energy levels rather than the doping-induced extension of visible region absorbance. Furthermore, the dispersed gold nanoparticles served as distinct reaction sites over the surface of a TiO2 photocatalyst besides their contribution to the plasmonic effect. Our study revealed that under certain spectral overlap conditions, the inter-semiconductor charge transfer might cause quenching of the water splitting photoactivity of a composite photocatalyst. We surmise that considering the aforementioned factors should assist in designing an efficient water splitting PC, eventually triggering technological advancements in this field.

Suggested Citation

  • Gupta, Narendra M., 2017. "Factors affecting the efficiency of a water splitting photocatalyst: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 585-601.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:585-601
    DOI: 10.1016/j.rser.2016.12.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Dan & Yang, Chun-Feng, 2016. "Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1048-1059.
    2. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    2. Sivasakthi, Sethuraman & Gurunathan, Karuppasamy, 2020. "Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance," Renewable Energy, Elsevier, vol. 159(C), pages 786-800.
    3. Yan, Jianhui & Yang, Haihua & Tang, Yougen & Lu, Zhouguang & Zheng, Shuqin & Yao, Maohai & Han, Yong, 2009. "Synthesis and photocatalytic activity of CuYyFe2−yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 34(11), pages 2399-2403.
    4. Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
    5. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    6. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    7. Kumar, Sanjay & Jain, Ankur & Ichikawa, T. & Kojima, Y. & Dey, G.K., 2017. "Development of vanadium based hydrogen storage material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 791-800.
    8. Reilly, Kevin & Wilkinson, David P. & Taghipour, Fariborz, 2018. "Photocatalytic water splitting in a fluidized bed system: Computational modeling and experimental studies," Applied Energy, Elsevier, vol. 222(C), pages 423-436.
    9. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    10. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    11. Jaafar, Siti Nur Hidayah & Minggu, Lorna Jeffery & Arifin, Khuzaimah & Kassim, Mohammad B. & Wan, Wan Ramli Daud, 2017. "Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 698-709.
    12. El Naggar, Ahmed M.A. & Gobara, Heba M. & Nassar, Ibrahim M., 2015. "Novel nano-structured for the improvement of photo-catalyzed hydrogen production via water splitting with in-situ nano-carbon formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1205-1216.
    13. Ashik, U.P.M. & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 221-256.
    14. Liangbin Xiong & Jialin Li & Ying Yu, 2009. "Energy Storage in Bifunctional TiO 2 Composite Materials under UV and Visible Light," Energies, MDPI, vol. 2(4), pages 1-22, November.
    15. Sathishkumar, Panneerselvam & Mangalaraja, Ramalinga Viswanathan & Anandan, Sambandam, 2016. "Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 426-454.
    16. Zhao, Dan & Yang, Chun-Feng, 2016. "Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1048-1059.
    17. Maryam Taherinia & Mohammad Nasiri & Ebrahim Abedini & Hamid Reza Pouretedal, 2019. "Influence of calcination temperature and solvent of titanium precursor on the photocatalytic activity of N-doped $$\hbox {TiO}_2$$TiO2 nanoparticles in $$\hbox {H}_2$$H2 evolution under visible radiat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1963-1975, August.
    18. Laura Clarizia & Danilo Russo & Ilaria Di Somma & Roberto Andreozzi & Raffaele Marotta, 2017. "Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials," Energies, MDPI, vol. 10(10), pages 1-21, October.
    19. Liang, Mengjun & Karthick, Ramalingam & Wei, Qiang & Dai, Jinhong & Jiang, Zhuosheng & Chen, Xuncai & Oo, Than Zaw & Aung, Su Htike & Chen, Fuming, 2022. "The progress and prospect of the solar-driven photoelectrochemical desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Su, En-Chin & Huang, Bing-Shun & Liu, Chao-Chang & Wey, Ming-Yen, 2015. "Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts," Renewable Energy, Elsevier, vol. 75(C), pages 266-271.

    More about this item

    Keywords

    Water splitting; Photocatalysis; H2 production; Nanophotocatalyst; Microstructure; Doping effect;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:585-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.