IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp492-505.html
   My bibliography  Save this article

Solar systems integrated with absorption heat pumps and thermal energy storages: state of art

Author

Listed:
  • Leonzio, Grazia

Abstract

Renewable energy sources (including hydropower, wind, biomass, geothermal, tidal, wave and solar energy sources) can satisfy the present and future energy demands, with minor environmental impact respect to traditional sources of energy. Solar energy is the cheapest and widely available renewable energy and solar cooling systems are a green cold production technology that produce minor CO2 emissions due to use of heat pumps. Infect, absorption refrigeration is a mature technology that has proved its applicability with the possibility to be driven by low grade solar energy. In this contest, thermal storage systems contribute to balance the disadvantages of the intermittent nature of solar energy and the variation in cooling demand, receiving more attention of researchers in the recent years.

Suggested Citation

  • Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:492-505
    DOI: 10.1016/j.rser.2016.11.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116308802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ćosić, Boris & Stanić, Zoran & Duić, Neven, 2011. "Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: Case study Croatia," Energy, Elsevier, vol. 36(4), pages 2017-2028.
    2. Kumar, Rakesh & Rosen, Marc A., 2011. "A critical review of photovoltaic–thermal solar collectors for air heating," Applied Energy, Elsevier, vol. 88(11), pages 3603-3614.
    3. Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.
    4. Andreea Ileana Zamfir, 2011. "Management Of Renewable Energy And Regional Development: European Experiences And Steps Forward," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(3), pages 35-42, August.
    5. Best, R. & Ortega, N., 1999. "Solar refrigeration and cooling," Renewable Energy, Elsevier, vol. 16(1), pages 685-690.
    6. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    7. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2008. "Heat transfer characteristics of thermal energy storage system using PCM capsules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2438-2458, December.
    8. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    9. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    10. Mehling, H. & Cabeza, L.F. & Hippeli, S. & Hiebler, S., 2003. "PCM-module to improve hot water heat stores with stratification," Renewable Energy, Elsevier, vol. 28(5), pages 699-711.
    11. Nithyanandam, K. & Pitchumani, R., 2014. "Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage," Energy, Elsevier, vol. 64(C), pages 793-810.
    12. Koca, Ahmet & Oztop, Hakan F. & Koyun, Tansel & Varol, Yasin, 2008. "Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector," Renewable Energy, Elsevier, vol. 33(4), pages 567-574.
    13. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    14. Krajacic, Goran & Duic, Neven & Tsikalakis, Antonis & Zoulias, Manos & Caralis, George & Panteri, Eirini & Carvalho, Maria da Graça, 2011. "Feed-in tariffs for promotion of energy storage technologies," Energy Policy, Elsevier, vol. 39(3), pages 1410-1425, March.
    15. Rosiek, S. & Batlles, F.J., 2009. "Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building," Renewable Energy, Elsevier, vol. 34(6), pages 1423-1431.
    16. Liu, Y.L. & Wang, R.Z., 2004. "Performance prediction of a solar/gas driving double effect LiBr–H2O absorption system," Renewable Energy, Elsevier, vol. 29(10), pages 1677-1695.
    17. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    18. Assilzadeh, F. & Kalogirou, S.A. & Ali, Y. & Sopian, K., 2005. "Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors," Renewable Energy, Elsevier, vol. 30(8), pages 1143-1159.
    19. Othman, Mohd Yusof & Ibrahim, Adnan & Jin, Goh Li & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2013. "Photovoltaic-thermal (PV/T) technology – The future energy technology," Renewable Energy, Elsevier, vol. 49(C), pages 171-174.
    20. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    21. Hawlader, M. N. A. & Uddin, M. S. & Khin, Mya Mya, 2003. "Microencapsulated PCM thermal-energy storage system," Applied Energy, Elsevier, vol. 74(1-2), pages 195-202, January.
    22. Kong, X.Q. & Zhang, D. & Li, Y. & Yang, Q.M., 2011. "Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 36(12), pages 6830-6838.
    23. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
    24. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    25. Pongtornkulpanich, A. & Thepa, S. & Amornkitbamrung, M. & Butcher, C., 2008. "Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorption cooling system in Thailand," Renewable Energy, Elsevier, vol. 33(5), pages 943-949.
    26. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    27. Mateus, Tiago & Oliveira, Armando C., 2009. "Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates," Applied Energy, Elsevier, vol. 86(6), pages 949-957, June.
    28. Tierney, M.J., 2007. "Options for solar-assisted refrigeration—Trough collectors and double-effect chillers," Renewable Energy, Elsevier, vol. 32(2), pages 183-199.
    29. Kalkan, Naci & Young, E.A. & Celiktas, Ahmet, 2012. "Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6352-6383.
    30. Atmaca, Ibrahim & Yigit, Abdulvahap, 2003. "Simulation of solar-powered absorption cooling system," Renewable Energy, Elsevier, vol. 28(8), pages 1277-1293.
    31. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    32. Tian, Y. & Zhao, C.Y., 2011. "A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals," Energy, Elsevier, vol. 36(9), pages 5539-5546.
    33. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    34. Li, Z. F. & Sumathy, K., 2000. "Technology development in the solar absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(3), pages 267-293, September.
    35. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    36. Uppal, A.H. & Norton, B. & Probert, S.D., 1986. "A low-cost solar-energy stimulated absorption refrigerator for vaccine storage," Applied Energy, Elsevier, vol. 25(3), pages 167-174.
    37. Hasan, M. Arif & Sumathy, K., 2010. "Photovoltaic thermal module concepts and their performance analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1845-1859, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    2. Xue, Lin & Wang, Jianxue & Zhang, Yao & Yong, Weizhen & Qi, Jie & Li, Haotian, 2023. "Model-data-event based community integrated energy system low-carbon economic scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    4. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Wu, Wei & Wang, Xiaoyu & Xia, Man & Dou, Yiping & Yin, Zhengyu & Wang, Jun & Lu, Ping, 2020. "A novel composite PCM for seasonal thermal energy storage of solar water heating system," Renewable Energy, Elsevier, vol. 161(C), pages 457-469.
    7. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Swati Anindita Sarker & Shouyang Wang & K M Mehedi Adnan & Muhammad Khalid Anser & Zeraibi Ayoub & Thu Hau Ho & Riffat Ara Zannat Tama & Anna Trunina & Md Mahmudul Hoque, 2020. "Economic Viability and Socio-Environmental Impacts of Solar Home Systems for Off-Grid Rural Electrification in Bangladesh," Energies, MDPI, vol. 13(3), pages 1-15, February.
    9. Radim Rybár & Martin Beer & Tawfik Mudarri & Sergey Zhironkin & Kamila Bačová & Jaroslav Dugas, 2021. "Experimental Evaluation of an Innovative Non-Metallic Flat Plate Solar Collector," Energies, MDPI, vol. 14(19), pages 1-16, September.
    10. Percy Andrew Hohne & Kanzumba Kusakana & Bubele Papy Numbi, 2020. "Improving Energy Efficiency of Thermal Processes in Healthcare Institutions: A Review on the Latest Sustainable Energy Management Strategies," Energies, MDPI, vol. 13(3), pages 1-28, January.
    11. Chen, Wei & Xu, Chenbin & Wu, Haibo & Bai, Yang & Li, Zoulu & Zhang, Bin, 2020. "Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 195(C).
    12. Bi, Yuehong & Qin, Lifeng & Guo, Jimeng & Li, Hongyan & Zang, Gaoli, 2020. "Performance analysis of solar air conditioning system based on the independent-developed solar parabolic trough collector," Energy, Elsevier, vol. 196(C).
    13. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    14. Fan, Yi & Zhao, Xudong & Li, Jing & Cheng, Yuanda & Badiei, Ali & Zhou, Jinzhi & Yu, Min & Li, Guiqiang & Du, Zhenyu & Ji, Jie & Zhu, Zishang & Ma, Xiaoli & Bai, Huifeng & Myers, Steve, 2020. "Operational performance of a novel fast-responsive heat storage/exchanging unit (HSEU) for solar heating systems," Renewable Energy, Elsevier, vol. 151(C), pages 137-151.
    15. Liu, W. & Ji, Y. & Huang, Y. & Zhang, X.J. & Wang, T. & Fang, M.X. & Jiang, L., 2024. "Adsorption-based post-combustion carbon capture assisted by synergetic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Li, Yufan & Bi, Yuehong & Lin, Yashan & Wang, Hongyan & Sun, Ruirui, 2023. "Analysis of the soil heat balance of a solar-ground source absorption heat pump with the soil-based energy storage in the transition season," Energy, Elsevier, vol. 264(C).
    17. Settino, Jessica & Sant, Tonio & Micallef, Christopher & Farrugia, Mario & Spiteri Staines, Cyril & Licari, John & Micallef, Alexander, 2018. "Overview of solar technologies for electricity, heating and cooling production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 892-909.
    18. Chen, Wei & Chenbin, Xu & Wu, Haibo & Li, Zoulu & Zhang, Bin & Yan, He, 2021. "Thermal analysis and optimization of combined cold and power system with integrated phosphoric acid fuel cell and two-stage compression–absorption refrigerator at low evaporation temperature," Energy, Elsevier, vol. 216(C).
    19. Hirmiz, R. & Lightstone, M.F. & Cotton, J.S., 2018. "Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials," Applied Energy, Elsevier, vol. 223(C), pages 11-29.
    20. Xie, Y. & Gilmour, M.S. & Yuan, Y. & Jin, H. & Wu, H., 2017. "A review on house design with energy saving system in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 29-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    2. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    3. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    4. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    5. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    6. Aliane, A. & Abboudi, S. & Seladji, C. & Guendouz, B., 2016. "An illustrated review on solar absorption cooling experimental studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 443-458.
    7. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    8. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    9. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    10. Cabrera, F.J. & Fernández-García, A. & Silva, R.M.P. & Pérez-García, M., 2013. "Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 103-118.
    11. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    12. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    13. Hirmiz, R. & Lightstone, M.F. & Cotton, J.S., 2018. "Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials," Applied Energy, Elsevier, vol. 223(C), pages 11-29.
    14. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    15. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    16. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    17. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    18. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    19. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    20. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:492-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.