IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i8p1143-1159.html
   My bibliography  Save this article

Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors

Author

Listed:
  • Assilzadeh, F.
  • Kalogirou, S.A.
  • Ali, Y.
  • Sopian, K.

Abstract

Solar radiation is a clean form of energy, which is required for almost all natural processes on earth. Solar-powered air-conditioning has many advantages when compared to a conventional electrical system. This paper presents a solar cooling system that has been designed for Malaysia and similar tropical regions using evacuated tube solar collectors and LiBr absorption unit. The modeling and simulation of the absorption solar cooling system is carried out with TRNSYS program. The typical meteorological year file containing the weather parameters for Malaysia is used to simulate the system. The results presented show that the system is in phase with the weather, i.e. the cooling demand is large during periods that the solar radiation is high. In order to achieve continuous operation and increase the reliability of the system, a 0.8m3 hot water storage tank is essential. The optimum system for Malaysia's climate for a 3.5kW (1 refrigeration ton) system consists of 35m2 evacuated tubes solar collector sloped at 20°.

Suggested Citation

  • Assilzadeh, F. & Kalogirou, S.A. & Ali, Y. & Sopian, K., 2005. "Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors," Renewable Energy, Elsevier, vol. 30(8), pages 1143-1159.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:8:p:1143-1159
    DOI: 10.1016/j.renene.2004.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104003817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaddar, N.K. & Shihab, M. & Bdeir, F., 1997. "Modeling and simulation of solar absorption system performance in Beirut," Renewable Energy, Elsevier, vol. 10(4), pages 539-558.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camelia Stanciu & Dorin Stanciu & Adina-Teodora Gheorghian, 2017. "Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup," Energies, MDPI, vol. 10(1), pages 1-19, January.
    2. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    3. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
    4. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    5. Javani, N. & Dincer, I. & Naterer, G.F., 2012. "Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles," Energy, Elsevier, vol. 46(1), pages 109-116.
    6. Hang, Yin & Qu, Ming & Zhao, Fu, 2011. "Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California," Renewable Energy, Elsevier, vol. 36(2), pages 648-658.
    7. Atmaca, Ibrahim & Yigit, Abdulvahap, 2003. "Simulation of solar-powered absorption cooling system," Renewable Energy, Elsevier, vol. 28(8), pages 1277-1293.
    8. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele, 2013. "Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks," Energy, Elsevier, vol. 59(C), pages 600-616.
    9. Yuridiana Rocio Galindo-Luna & Efraín Gómez-Arias & Rosenberg J. Romero & Eduardo Venegas-Reyes & Moisés Montiel-González & Helene Emmi Karin Unland-Weiss & Pedro Pacheco-Hernández & Antonio González-, 2018. "Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H 2 O—Las Tres Vírgenes (Baja California Sur), “La Reforma” Case," Energies, MDPI, vol. 11(5), pages 1-23, May.
    10. Lu, Z.S. & Wang, R.Z. & Xia, Z.Z. & Lu, X.R. & Yang, C.B. & Ma, Y.C. & Ma, G.B., 2013. "Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors," Renewable Energy, Elsevier, vol. 50(C), pages 299-306.
    11. García Casals, Xavier, 2006. "Solar absorption cooling in Spain: Perspectives and outcomes from the simulation of recent installations," Renewable Energy, Elsevier, vol. 31(9), pages 1371-1389.
    12. Alotaibi, Sorour, 2011. "Energy consumption in Kuwait: Prospects and future approaches," Energy Policy, Elsevier, vol. 39(2), pages 637-643, February.
    13. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.
    14. Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.
    15. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    16. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    17. Elsafty, A & Al-Daini, A.J, 2002. "Economical comparison between a solar-powered vapour absorption air-conditioning system and a vapour compression system in the Middle East," Renewable Energy, Elsevier, vol. 25(4), pages 569-583.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:8:p:1143-1159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.