IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v178y2023ics1364032123000898.html
   My bibliography  Save this article

Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings

Author

Listed:
  • Herrando, M.
  • Coca-Ortegón, A.
  • Guedea, I.
  • Fueyo, N.

Abstract

This work aims to validate a transient model of a solar hybrid pilot plant based on photovoltaic-thermal (PV-T) collectors integrated via thermal storage tanks with an air-to-water reversible heat pump (rev-HP). The pilot plant is in operation and provides space heating, cooling, domestic hot water (DHW) and electricity to an industrial building located in Zaragoza (Spain). The plant consists of eight uncovered PV-T collectors (2.6 kWe, 13.6 m2), two water tanks and a rev-HP with a nominal thermal power of 16 kW for heating and 10.5 kW for cooling. The validation results show that the transient model fits the experimental performance of the PV-T collectors, with an average error of -16% and 3%, for the thermal and electrical generation respectively. The accuracy of the estimated rev-HP performance depends on the operation mode. The estimated COP in cooling mode has an average error of 14%, while in heating mode has an average error of -10%. The results show that the integration of the thermal and electrical generation of the PV-T collectors with a high-performance rev-HP allows the solar PV-T system to be self-sufficient to satisfy the building energy demand.

Suggested Citation

  • Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123000898
    DOI: 10.1016/j.rser.2023.113233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Ruobing & Zhou, Chao & Zhang, Jili & Chen, Jianquan & Riaz, Ahmad, 2020. "Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: An experimental investigation," Renewable Energy, Elsevier, vol. 146(C), pages 2450-2461.
    2. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    3. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    4. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    5. Zhang, Xingxing & Shen, Jingchun & Xu, Peng & Zhao, Xudong & Xu, Ying, 2014. "Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions," Applied Energy, Elsevier, vol. 135(C), pages 20-34.
    6. Fong, K.F. & Lee, C.K. & Chow, T.T., 2012. "Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 189-195.
    7. Ma, Juanli & Fung, Alan S. & Brands, Monica & Abul Moyeed, Osama Mohammad & Mhanna, Ahmad & Juan, Neil, 2021. "Effects of photovoltaic/thermal (PV/T) control strategies on the performance of liquid-based PV/T assisted heat pump for space heating," Renewable Energy, Elsevier, vol. 172(C), pages 753-764.
    8. Zhou, Jinzhi & Zhao, Xudong & Ma, Xiaoli & Qiu, Zhongzhu & Ji, Jie & Du, Zhenyu & Yu, Min, 2016. "Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules," Applied Energy, Elsevier, vol. 178(C), pages 484-495.
    9. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
    10. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    11. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    12. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo, 2018. "Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1874-1908.
    13. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    14. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    15. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    16. Keliang, Liu & Jie, Ji & Tin-tai, Chow & Gang, Pei & Hanfeng, He & Aiguo, Jiang & Jichun, Yang, 2009. "Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor – A case study in Tibet," Renewable Energy, Elsevier, vol. 34(12), pages 2680-2687.
    17. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    18. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    19. Buonomano, A. & Calise, F. & Palombo, A., 2013. "Solar heating and cooling systems by CPVT and ET solar collectors: A novel transient simulation model," Applied Energy, Elsevier, vol. 103(C), pages 588-606.
    20. Yang, Chi-Jen, 2010. "Reconsidering solar grid parity," Energy Policy, Elsevier, vol. 38(7), pages 3270-3273, July.
    21. Drosou, Vassiliki N. & Tsekouras, Panagiotis D. & Oikonomou, Th.I. & Kosmopoulos, Panos I. & Karytsas, Constantine S., 2014. "The HIGH-COMBI project: High solar fraction heating and cooling systems with combination of innovative components and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 463-472.
    22. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    23. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    24. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    25. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Qiao, Yaning & Zhang, Xin, 2020. "Energy performance and life cycle cost assessments of a photovoltaic/thermal assisted heat pump system," Energy, Elsevier, vol. 206(C).
    26. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    27. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    28. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Ebrahimnia-Bajestan, Ehsan & Davidson, John & Bailie, David, 2020. "Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity," Renewable Energy, Elsevier, vol. 148(C), pages 558-572.
    29. Zhang, Xingxing & Zhao, Xudong & Xu, Jihuan & Yu, Xiaotong, 2013. "Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system," Applied Energy, Elsevier, vol. 102(C), pages 1229-1245.
    30. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    31. Ji, Jie & Liu, Keliang & Chow, Tin-tai & Pei, Gang & He, Wei & He, Hanfeng, 2008. "Performance analysis of a photovoltaic heat pump," Applied Energy, Elsevier, vol. 85(8), pages 680-693, August.
    32. Herrando, María & Markides, Christos N., 2016. "Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations," Applied Energy, Elsevier, vol. 161(C), pages 512-532.
    33. Li, Y.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X., 2007. "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 32(8), pages 1361-1374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Woroniak & Joanna Piotrowska-Woroniak & Anna Woroniak & Edyta Owczarek & Krystyna Giza, 2024. "Analysis of the Hybrid Power-Heating System in a Single-Family Building, along with Ecological Aspects of the Operation," Energies, MDPI, vol. 17(11), pages 1-24, May.
    2. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Paduano, Bruno & Parrinello, Luca & Niosi, Francesco & Dell’Edera, Oronzo & Sirigu, Sergej Antonello & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Towards standardised design of wave energy converters: A high-fidelity modelling approach," Renewable Energy, Elsevier, vol. 224(C).
    4. Agata Ołtarzewska & Dorota Anna Krawczyk, 2024. "Simulation and Performance Analysis of an Air-Source Heat Pump and Photovoltaic Panels Integrated with Service Building in Different Climate Zones of Poland," Energies, MDPI, vol. 17(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    2. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    4. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    5. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    7. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    8. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    9. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    10. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    11. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Jia, Teng & Dai, Yanjun, 2018. "Development of a novel unbalanced ammonia-water absorption-resorption heat pump cycle for space heating," Energy, Elsevier, vol. 161(C), pages 251-265.
    13. Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
    14. Bugaj, Marcin A. & Mik, Krzysztof, 2023. "Can PVT bend?: The elaboration of flexible hybrid photovoltaic thermal solar collector structure and testing methodology," Renewable Energy, Elsevier, vol. 215(C).
    15. Basalike, Pie & Peng, Wang & Zhang, Jili & Lu, Shixiang, 2022. "Numerical investigation on the performance and environmental aspect of roll bond photovoltaic thermal unit condenser incorporating fins on the absorber," Energy, Elsevier, vol. 252(C).
    16. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    17. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    18. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Ebrahimnia-Bajestan, Ehsan & Davidson, John & Bailie, David, 2020. "Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity," Renewable Energy, Elsevier, vol. 148(C), pages 558-572.
    19. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    20. Tryfon C. Roumpedakis & Salvatore Vasta & Alessio Sapienza & George Kallis & Sotirios Karellas & Ursula Wittstadt & Mirko Tanne & Niels Harborth & Uwe Sonnenfeld, 2020. "Performance Results of a Solar Adsorption Cooling and Heating Unit," Energies, MDPI, vol. 13(7), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123000898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.