IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip1p727-737.html
   My bibliography  Save this article

A fuzzy logic tool to evaluate low-head hydropower technologies at the outlet of wastewater treatment plants

Author

Listed:
  • Ak, Mümtaz
  • Kentel, Elçin
  • Kucukali, Serhat

Abstract

This study aims to find the most sustainable mature Low-Head (LH) hydropower technology option to generate hydroelectricity at the outlet of wastewater treatment plants by assessing the relevant economic, technical, and environmental criteria. A total of six criteria are assessed: investment cost, payback period, energy generation performance, construction duration, fish-friendliness, and aeration capacity. The fuzzy logic tool estimates satisfaction of each criterion separately and then aggregates them into an Overall Performance Index. The proposed method is applied to an existing wastewater treatment plant (Tatlar WWTP) in Ankara, Turkey. For the assessment, the real-time operational data of the plant and the technical drawings are employed. According to the multi-criteria analysis tool developed in this study to evaluate the LW technologies’ the most appropriate hydropower technology for the outlet of Tatlar WWTP is found to be the Archimedean screw, because of its superior environmental and economic performance.

Suggested Citation

  • Ak, Mümtaz & Kentel, Elçin & Kucukali, Serhat, 2017. "A fuzzy logic tool to evaluate low-head hydropower technologies at the outlet of wastewater treatment plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 727-737.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:727-737
    DOI: 10.1016/j.rser.2016.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630661X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kucukali, Serhat, 2010. "Hydropower potential of municipal water supply dams in Turkey: A case study in Ulutan Dam," Energy Policy, Elsevier, vol. 38(11), pages 6534-6539, November.
    2. Loots, I. & van Dijk, M. & Barta, B. & van Vuuren, S.J. & Bhagwan, J.N., 2015. "A review of low head hydropower technologies and applications in a South African context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1254-1268.
    3. Deng, Zhiqun & Carlson, Thomas J. & Ploskey, Gene R. & Richmond, Marshall C. & Dauble, Dennis D., 2007. "Evaluation of blade-strike models for estimating the biological performance of Kaplan turbines," Ecological Modelling, Elsevier, vol. 208(2), pages 165-176.
    4. Rohmer, Julien & Knittel, Dominique & Sturtzer, Guy & Flieller, Damien & Renaud, Jean, 2016. "Modeling and experimental results of an Archimedes screw turbine," Renewable Energy, Elsevier, vol. 94(C), pages 136-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    2. Quaranta, Emanuele & Revelli, Roberto, 2018. "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 414-427.
    3. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    5. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    6. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2019. "Influence of equipment size and installation height on electricity production in an Archimedes screw-based ultra-low head small hydropower plant and its economic feasibility," Renewable Energy, Elsevier, vol. 142(C), pages 468-477.
    7. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    8. Ansorena Ruiz, R. & de Vilder, L.H. & Prasasti, E.B. & Aouad, M. & De Luca, A. & Geisseler, B. & Terheiden, K. & Scanu, S. & Miccoli, A. & Roeber, V. & Marence, M. & Moll, R. & Bricker, J.D. & Goseber, 2022. "Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    2. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    3. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Linda Vikström & Kjell Leonardsson & Johan Leander & Samuel Shry & Olle Calles & Gustav Hellström, 2020. "Validation of Francis–Kaplan Turbine Blade Strike Models for Adult and Juvenile Atlantic Salmon (Salmo Salar, L.) and Anadromous Brown Trout (Salmo Trutta, L.) Passing High Head Turbines," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    5. Zhu, Guojun & Guo, Yuxing & Feng, Jianjun & Gao, Luhan & Wu, Guangkuan & Luo, Xingqi, 2022. "Analysis and reduction of the pressure and shear damage probability of fish in a Francis turbine," Renewable Energy, Elsevier, vol. 199(C), pages 462-473.
    6. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    7. Andrej Predin & Matej Fike & Marko Pezdevšek & Gorazd Hren, 2021. "Lost Energy of Water Spilled over Hydropower Dams," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    8. Zhiqun Deng & Thomas J. Carlson & Dennis D. Dauble & Gene R. Ploskey, 2011. "Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling," Energies, MDPI, vol. 4(1), pages 1-11, January.
    9. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    10. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    11. Phoevos (Foivos) Koukouvinis & John Anagnostopoulos, 2023. "State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators," Energies, MDPI, vol. 16(6), pages 1-25, March.
    12. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    13. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2019. "Influence of equipment size and installation height on electricity production in an Archimedes screw-based ultra-low head small hydropower plant and its economic feasibility," Renewable Energy, Elsevier, vol. 142(C), pages 468-477.
    14. Erinofiardi Erinofiardi & Ravi Koirala & Nirajan Shiwakoti & Abhijit Date, 2022. "Sustainable Power Generation Using Archimedean Screw Turbine: Influence of Blade Number on Flow and Performance," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    15. Yang, Chunxia & Li, Qian & Hu, Xueyuan & Zheng, Yuan & Wu, Jiawei & Su, Shengzhi & Yu, An, 2023. "Fish injury analysis and flip-blade type optimization design of an undershot waterwheel," Renewable Energy, Elsevier, vol. 219(P1).
    16. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    17. Dellinger, Guilhem & Simmons, Scott & Lubitz, William David & Garambois, Pierre-André & Dellinger, Nicolas, 2019. "Effect of slope and number of blades on Archimedes screw generator power output," Renewable Energy, Elsevier, vol. 136(C), pages 896-908.
    18. Zhang, Jin & Xu, Linyu & Yu, Bing & Li, Xiaojin, 2014. "Environmentally feasible potential for hydropower development regarding environmental constraints," Energy Policy, Elsevier, vol. 73(C), pages 552-562.
    19. Bartosz Ceran & Jakub Jurasz & Robert Wróblewski & Adam Guderski & Daria Złotecka & Łukasz Kaźmierczak, 2020. "Impact of the Minimum Head on Low-Head Hydropower Plants Energy Production and Profitability," Energies, MDPI, vol. 13(24), pages 1-21, December.
    20. Zhou, Yanlai & Chang, Li-Chiu & Uen, Tin-Shuan & Guo, Shenglian & Xu, Chong-Yu & Chang, Fi-John, 2019. "Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus," Applied Energy, Elsevier, vol. 238(C), pages 668-682.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:727-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.