IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15948-d988472.html
   My bibliography  Save this article

Sustainable Power Generation Using Archimedean Screw Turbine: Influence of Blade Number on Flow and Performance

Author

Listed:
  • Erinofiardi Erinofiardi

    (Department of Mechanical Engineering, Faculty of Engineering, University of Bengkulu, Bengkulu 38171, Indonesia
    School of Engineering, RMIT University, Melbourne, VIC 3001, Australia)

  • Ravi Koirala

    (School of Engineering, RMIT University, Melbourne, VIC 3001, Australia)

  • Nirajan Shiwakoti

    (School of Engineering, RMIT University, Melbourne, VIC 3001, Australia)

  • Abhijit Date

    (School of Engineering, RMIT University, Melbourne, VIC 3001, Australia)

Abstract

Hydropower has been one of the mature renewable energy systems encompassing a major fraction of renewable energy. Archimedean screw turbines are gaining new interest in hydropower generation that are suitable for low head applications. This paper empirically and experimentally studies the flow inside Archimedean screw turbines along with the influence of blade numbers on their performance. The major objective of this work is to investigate performance and conduct design optimization of a screw turbine operating under ultra-low head (<0.2 m) conditions. Experimentally verified empirical results show its reliability in estimating the performance of turbines at low operational speeds. Further, the results show that with the increasing number of blades, the efficiency and power generation capacity can be increased, but the overall performance improvement relative to one blade turbine peaks at around 7 blades. Increasing the power generation capacity can in turn make the turbine compact and could be fabricated at a low-cost.

Suggested Citation

  • Erinofiardi Erinofiardi & Ravi Koirala & Nirajan Shiwakoti & Abhijit Date, 2022. "Sustainable Power Generation Using Archimedean Screw Turbine: Influence of Blade Number on Flow and Performance," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15948-:d:988472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arash YoosefDoost & William David Lubitz, 2020. "Archimedes Screw Turbines: A Sustainable Development Solution for Green and Renewable Energy Generation—A Review of Potential and Design Procedures," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    2. Shahverdi, K. & Loni, R. & Ghobadian, B. & Gohari, S. & Marofi, S. & Bellos, Evangelos, 2020. "Numerical Optimization Study of Archimedes Screw Turbine (AST): A case study," Renewable Energy, Elsevier, vol. 145(C), pages 2130-2143.
    3. Ine S. Pauwels & Raf Baeyens & Gert Toming & Matthias Schneider & David Buysse & Johan Coeck & Jeffrey A. Tuhtan, 2020. "Multi-Species Assessment of Injury, Mortality, and Physical Conditions during Downstream Passage through a Large Archimedes Hydrodynamic Screw (Albert Canal, Belgium)," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    4. Kozyn, Andrew & Lubitz, William David, 2017. "A power loss model for Archimedes screw generators," Renewable Energy, Elsevier, vol. 108(C), pages 260-273.
    5. Rohmer, Julien & Knittel, Dominique & Sturtzer, Guy & Flieller, Damien & Renaud, Jean, 2016. "Modeling and experimental results of an Archimedes screw turbine," Renewable Energy, Elsevier, vol. 94(C), pages 136-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phoevos (Foivos) Koukouvinis & John Anagnostopoulos, 2023. "State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators," Energies, MDPI, vol. 16(6), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arash YoosefDoost & William David Lubitz, 2021. "Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry," Energies, MDPI, vol. 14(22), pages 1-14, November.
    2. Mar Alonso-Martinez & José Luis Suárez Sierra & Juan José del Coz Díaz & Juan Enrique Martinez-Martinez, 2020. "A New Methodology to Design Sustainable Archimedean Screw Turbines as Green Energy Generators," IJERPH, MDPI, vol. 17(24), pages 1-14, December.
    3. Dylan Sheneth Edirisinghe & Ho-Seong Yang & Min-Sung Kim & Byung-Ha Kim & Sudath Prasanna Gunawardane & Young-Ho Lee, 2021. "Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle," Energies, MDPI, vol. 14(11), pages 1-18, June.
    4. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    5. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2019. "Influence of equipment size and installation height on electricity production in an Archimedes screw-based ultra-low head small hydropower plant and its economic feasibility," Renewable Energy, Elsevier, vol. 142(C), pages 468-477.
    6. Bouvant, Maël & Betancour, Johan & Velásquez, Laura & Rubio-Clemente, Ainhoa & Chica, Edwin, 2021. "Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology," Renewable Energy, Elsevier, vol. 172(C), pages 941-954.
    7. Dellinger, Guilhem & Simmons, Scott & Lubitz, William David & Garambois, Pierre-André & Dellinger, Nicolas, 2019. "Effect of slope and number of blades on Archimedes screw generator power output," Renewable Energy, Elsevier, vol. 136(C), pages 896-908.
    8. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Historical development and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    10. Phoevos (Foivos) Koukouvinis & John Anagnostopoulos, 2023. "State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators," Energies, MDPI, vol. 16(6), pages 1-25, March.
    11. Ansorena Ruiz, R. & de Vilder, L.H. & Prasasti, E.B. & Aouad, M. & De Luca, A. & Geisseler, B. & Terheiden, K. & Scanu, S. & Miccoli, A. & Roeber, V. & Marence, M. & Moll, R. & Bricker, J.D. & Goseber, 2022. "Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Dellinger, Guilhem & Garambois, Pierre-André & Dellinger, Nicolas & Dufresne, Matthieu & Terfous, Abdelali & Vazquez, Jose & Ghenaim, Abdellah, 2018. "Computational fluid dynamics modeling for the design of Archimedes Screw Generator," Renewable Energy, Elsevier, vol. 118(C), pages 847-857.
    13. Popescu, Daniela & Dragomirescu, Andrei, 2024. "Cost-benefit analysis of a hydro-solar microsystem with Archimedean screw hydro turbine sized for a prosumer building," Renewable Energy, Elsevier, vol. 226(C).
    14. Scott Simmons & Guilhem Dellinger & William David Lubitz, 2023. "Effects of Parameter Scaling on Archimedes Screw Generator Performance," Energies, MDPI, vol. 16(21), pages 1-22, October.
    15. Quaranta, Emanuele & Revelli, Roberto, 2018. "Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 414-427.
    16. Ak, Mümtaz & Kentel, Elçin & Kucukali, Serhat, 2017. "A fuzzy logic tool to evaluate low-head hydropower technologies at the outlet of wastewater treatment plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 727-737.
    17. Zhu, Qianming & Qi, Yinke & Huang, Diangui, 2023. "Numerical simulation of performance of traveling wave pump-turbine at different wave speeds in pumping mode," Renewable Energy, Elsevier, vol. 203(C), pages 485-494.
    18. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    19. Bartosz Ceran & Jakub Jurasz & Robert Wróblewski & Adam Guderski & Daria Złotecka & Łukasz Kaźmierczak, 2020. "Impact of the Minimum Head on Low-Head Hydropower Plants Energy Production and Profitability," Energies, MDPI, vol. 13(24), pages 1-21, December.
    20. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Barriers and the outlook for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15948-:d:988472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.