IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v65y2016icp44-56.html
   My bibliography  Save this article

Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review

Author

Listed:
  • Zhao, Bingtao
  • Tao, Wenwen
  • Zhong, Mei
  • Su, Yaxin
  • Cui, Guomin

Abstract

Anthropogenic CO2 emissions have become an important issue in related to energy, economy and the environment. To maintain CO2 at controllable levels, emission reductions are urgently required. One way of accomplishing this may be via CO2 capture and separation. As a kind of extreme physical condition, high gravity with rotating packed bed (RPB) technology is considered to be a high-efficiency chemical method for CO2 capture. This article reviews the process, performance, and modeling of CO2 capture with high gravity, focusing on (1) mechanisms of gas-liquid process intensification, (2) CO2 capture performance characteristics, (3) CO2 capture efficiency responses to influencing factors including: hypergravity factor, absorbent and CO2 concentrations, gas-liquid ratio, and the reaction temperature/pressure; and finally (4) CO2 capture performance modeling and analysis related to pressure drop and mass transfer. Future directions are also prospected for fundamental research and development of CO2 capture with high gravity.

Suggested Citation

  • Zhao, Bingtao & Tao, Wenwen & Zhong, Mei & Su, Yaxin & Cui, Guomin, 2016. "Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 44-56.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:44-56
    DOI: 10.1016/j.rser.2016.06.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116302908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.06.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    2. Zhao, Bingtao & Su, Yaxin & Tao, Wenwen, 2014. "Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction," Applied Energy, Elsevier, vol. 136(C), pages 132-142.
    3. Zhao, Bingtao & Su, Yaxin & Cui, Guomin, 2016. "Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: Process intensification and performance characteristics," Energy, Elsevier, vol. 102(C), pages 106-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hong & Zhao, Zhenyu & Xiouras, Christos & Stefanidis, Georgios D. & Li, Xingang & Gao, Xin, 2019. "Fundamentals and applications of microwave heating to chemicals separation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Farhad Ghadyanlou & Ahmad Azari & Ali Vatani, 2021. "A Review of Modeling Rotating Packed Beds and Improving Their Parameters: Gas–Liquid Contact," Sustainability, MDPI, vol. 13(14), pages 1-42, July.
    3. Farhad Ghadyanlou & Ahmad Azari & Ali Vatani, 2022. "Experimental Investigation of Mass Transfer Intensification for CO 2 Capture by Environment-Friendly Water Based Nanofluid Solvents in a Rotating Packed Bed," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    4. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Jung, Howoun & Park, Nohjin & Lee, Jay H., 2024. "Evaluating the efficiency and cost-effectiveness of RPB-based CO2 capture: A comprehensive approach to simultaneous design and operating condition optimization," Applied Energy, Elsevier, vol. 365(C).
    6. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
    7. Yanchi Jiang & Zhongxiao Zhang & Haojie Fan & Junjie Fan & Haiquan An, 2018. "Experimental study on hybrid MS†CA system for post†combustion CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 379-392, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    2. Zhao, Bingtao & Su, Yaxin & Cui, Guomin, 2016. "Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: Process intensification and performance characteristics," Energy, Elsevier, vol. 102(C), pages 106-117.
    3. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    4. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    5. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    6. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    7. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    8. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    9. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    10. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    11. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    12. Hwang, Kyung-Ran & Park, Jin-Woo & Lee, Sung-Wook & Hong, Sungkook & Lee, Chun-Boo & Oh, Duck-Kyu & Jin, Min-Ho & Lee, Dong-Wook & Park, Jong-Soo, 2015. "Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery," Energy, Elsevier, vol. 90(P1), pages 1192-1198.
    13. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    14. Pan, Shu-Yuan & Eleazar, Elisa G. & Chang, E-E & Lin, Yi-Pin & Kim, Hyunook & Chiang, Pen-Chi, 2015. "Systematic approach to determination of optimum gas-phase mass transfer rate for high-gravity carbonation process of steelmaking slags in a rotating packed bed," Applied Energy, Elsevier, vol. 148(C), pages 23-31.
    15. Amani Alnahdi & Ali Elkamel & Munawar A. Shaik & Saad A. Al-Sobhi & Fatih S. Erenay, 2019. "Optimal Production Planning and Pollution Control in Petroleum Refineries Using Mathematical Programming and Dispersion Models," Sustainability, MDPI, vol. 11(14), pages 1-31, July.
    16. Seles, Bruno Michel Roman Pais & Lopes de Sousa Jabbour, Ana Beatriz & Jabbour, Charbel Jose Chiappetta & Latan, Hengky & Roubaud, David, 2019. "Do Environmental Practices Improve Business Performance Even in an Economic Crisis? Extending the Win-Win Perspective," Ecological Economics, Elsevier, vol. 163(C), pages 189-204.
    17. Ben Mansour, R. & Nemitallah, M.A. & Habib, M.A., 2013. "Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor," Energy, Elsevier, vol. 54(C), pages 322-332.
    18. Jiao, Weizhou & Luo, Shuai & He, Zhen & Liu, Youzhi, 2017. "Emulsified behaviors for the formation of Methanol-Diesel oil under high gravity environment," Energy, Elsevier, vol. 141(C), pages 2387-2396.
    19. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    20. Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:44-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.