IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v468y2022ics0304380022000746.html
   My bibliography  Save this article

Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze

Author

Listed:
  • Du, Hailong
  • Yang, Liu
  • Wang, Wenzhong
  • Lu, Lunhui
  • Li, Zhe

Abstract

Cascade development of hydropower projects in a river basin can fully enhance the utilization of hydropower resources. Yet, the impacts of cascade hydropower projects on river ecosystems and social-economic systems are not well elaborated. The current research proposed an emergy estimation method to evaluate the environmental sustainability of two large hydropower projects and suggest the reasonable scale of hydropower development at river basin scale. Unlike traditional approach that used a single hydropower project as a system, the method took river reach as a system. The cascade hydropower development in lower Jinsha River, the river reach in the upper Yangtze River in China, were taken as the case study to apply the method. The results shown that at current level of construction and management, the development of Xiangjiaba and Xiluodu are still sustainable but insufficient. And the scale of large hydropower development in the lower reaches of the Jinsha River is suggested to be 29000 MW to 54000 MW. Then the transformity of hydroelectricity would be 9.50E+04seJ/J to 6.85E+04seJ/J. The Emergy sustainability indicator (ESI) decreases with the increasing of development scale, ESI would be 6.5 in the case of current development plan (45200MW), which means a good utilization efficiency and sustainability. However, the on-grid electricity price was suggested to increase to 0.40 CNY/kW•h for the reason that fair price of the electricity is higher than the on-grid electricity price. Such evaluation results could have a greater reference for hydropower planning in river basin. We believed that this approach can help policymakers and stakeholders make more reliable decisions in hydropower planning.

Suggested Citation

  • Du, Hailong & Yang, Liu & Wang, Wenzhong & Lu, Lunhui & Li, Zhe, 2022. "Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze," Ecological Modelling, Elsevier, vol. 468(C).
  • Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000746
    DOI: 10.1016/j.ecolmodel.2022.109954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yun & Li, Yanbin & Ji, Pengfei & Yang, Jing, 2015. "The status quo analysis and policy suggestions on promoting China׳s hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1071-1079.
    2. Chen, Wei & Liu, Wenjing & Geng, Yong & Brown, Mark T. & Gao, Cuixia & Wu, Rui, 2017. "Recent progress on emergy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1051-1060.
    3. Kankal, Murat & Bayram, Adem & Uzlu, Ergun & Satilmiş, Uğur, 2014. "Assessment of hydropower and multi-dam power projects in Turkey," Renewable Energy, Elsevier, vol. 68(C), pages 118-133.
    4. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    5. Fang, Delin & Chen, Shaoqing & Chen, Bin, 2015. "Emergy analysis for the upper Mekong river intercepted by the Manwan hydropower construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 899-909.
    6. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    7. Liu, Jian & Zuo, Jian & Sun, Zhiyu & Zillante, George & Chen, Xianming, 2013. "Sustainability in hydropower development—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 230-237.
    8. Ingwersen, Wesley W., 2010. "Uncertainty characterization for emergy values," Ecological Modelling, Elsevier, vol. 221(3), pages 445-452.
    9. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    10. Mishra, Sachin & Singal, S.K. & Khatod, D.K., 2011. "Optimal installation of small hydropower plant—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3862-3869.
    11. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.
    12. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    13. Brown, Mark T. & Ulgiati, Sergio, 2016. "Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline," Ecological Modelling, Elsevier, vol. 339(C), pages 126-132.
    14. Zhang, Jin & Xu, Linyu & Li, Xiaojin, 2015. "Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 176-185.
    15. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    16. Filho, Geraldo Lucio Tiago & Santos, Ivan Felipe Silva dos & Barros, Regina Mambeli, 2017. "Cost estimate of small hydroelectric power plants based on the aspect factor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 229-238.
    17. Campbell, Daniel E. & Lu, Hongfang & Lin, Bin-Le, 2014. "Emergy evaluations of the global biogeochemical cycles of six biologically active elements and two compounds," Ecological Modelling, Elsevier, vol. 271(C), pages 32-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    2. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    5. Ren, Siyue & Feng, Xiao & Yang, Minbo, 2023. "Solution of issues in emergy theory caused by pathway tracking: Taking China's power generation system as an example," Energy, Elsevier, vol. 262(PB).
    6. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    7. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    8. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    9. Hairuo Wang & Yexin Liu & Junxue Zhang & He Zhang & Li Huang & Dan Xu & Chunxia Zhang, 2022. "Sustainability Investigation in the Building Cement Production System Based on the LCA-Emergy Method," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    10. Zhang, Can & Su, Bo & Beckmann, Michael & Volk, Martin, 2024. "Emergy-based evaluation of ecosystem services: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Berrios, Fernando & Campbell, Daniel E. & Ortiz, Marco, 2017. "Emergy evaluation of benthic ecosystems influenced by upwelling in northern Chile: Contributions of the ecosystems to the regional economy," Ecological Modelling, Elsevier, vol. 359(C), pages 146-164.
    12. Evariste Rutebuka & Lixiao Zhang & Ernest Frimpong Asamoah & Mingyue Pang & Emmanuel Rukundo, 2018. "Resource Dynamism of the Rwandan Economy: An Emergy Approach," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    13. Hennig, Thomas, 2016. "Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1232-1246.
    14. Jing An & Aitian Tao & He Yang & Ang Tian, 2021. "Sustainability Assessment of the Rare-Earth-Oxide Production Process and Comparison of Environmental Performance Improvements Based on Emergy Analysis," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    15. Gao, Mengdi & Liu, Conghu & Li, Lei & Li, Qiang & Wang, Qingyang & Liu, Zhifeng, 2024. "Emergy-based method for the sustainability assessment and improvement of additive manufacturing systems," Energy, Elsevier, vol. 290(C).
    16. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.
    17. Tian, Xu & Geng, Yong & Viglia, Silvio & Bleischwitz, Raimund & Buonocore, Elvira & Ulgiati, Sergio, 2017. "Regional disparities in the Chinese economy. An emergy evaluation of provincial international trade," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 1-11.
    18. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    19. Duian Lu & Jie Cheng & Zhenzhou Feng & Li Sun & Wei Mo & Degang Wang, 2022. "Emergy Synthesis of Two Oyster Aquaculture Systems in Zhejiang Province, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    20. Ana Carolina V. Nadalini & Ricardo de Araujo Kalid & Ednildo Andrade Torres, 2021. "Emergy as a Tool to Evaluate Ecosystem Services: A Systematic Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.