IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0128630.html
   My bibliography  Save this article

From Boolean Network Model to Continuous Model Helps in Design of Functional Circuits

Author

Listed:
  • Bin Shao
  • Xiang Liu
  • Dongliang Zhang
  • Jiayi Wu
  • Qi Ouyang

Abstract

Computational circuit design with desired functions in a living cell is a challenging task in synthetic biology. To achieve this task, numerous methods that either focus on small scale networks or use evolutionary algorithms have been developed. Here, we propose a two-step approach to facilitate the design of functional circuits. In the first step, the search space of possible topologies for target functions is reduced by reverse engineering using a Boolean network model. In the second step, continuous simulation is applied to evaluate the performance of these topologies. We demonstrate the usefulness of this method by designing an example biological function: the SOS response of E. coli. Our numerical results show that the desired function can be faithfully reproduced by candidate networks with different parameters and initial conditions. Possible circuits are ranked according to their robustness against perturbations in parameter and gene expressions. The biological network is among the candidate networks, yet novel designs can be generated. Our method provides a scalable way to design robust circuits that can achieve complex functions, and makes it possible to uncover design principles of biological networks.

Suggested Citation

  • Bin Shao & Xiang Liu & Dongliang Zhang & Jiayi Wu & Qi Ouyang, 2015. "From Boolean Network Model to Continuous Model Helps in Design of Functional Circuits," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
  • Handle: RePEc:plo:pone00:0128630
    DOI: 10.1371/journal.pone.0128630
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128630
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0128630&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0128630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arthur Prindle & Phillip Samayoa & Ivan Razinkov & Tal Danino & Lev S. Tsimring & Jeff Hasty, 2012. "A sensing array of radically coupled genetic ‘biopixels’," Nature, Nature, vol. 481(7379), pages 39-44, January.
    2. Tal Danino & Octavio Mondragón-Palomino & Lev Tsimring & Jeff Hasty, 2010. "A synchronized quorum of genetic clocks," Nature, Nature, vol. 463(7279), pages 326-330, January.
    3. Baojun Wang & Richard I Kitney & Nicolas Joly & Martin Buck, 2011. "Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    4. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    5. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    2. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    3. Munia Amin & Varun B Kothamachu & Elisenda Feliu & Birgit E Scharf & Steven L Porter & Orkun S Soyer, 2014. "Phosphate Sink Containing Two-Component Signaling Systems as Tunable Threshold Devices," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-11, October.
    4. Jung Hun Park & Gábor Holló & Yolanda Schaerli, 2024. "From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    6. Ci Kong & Yin Yang & Tiancong Qi & Shuyi Zhang, 2025. "Predictive genetic circuit design for phenotype reprogramming in plants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    9. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    10. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    11. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Jean Peccoud & Mark Isalan, 2012. "The PLOS ONE Synthetic Biology Collection: Six Years and Counting," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-7, August.
    14. Velia Siciliano & Filippo Menolascina & Lucia Marucci & Chiara Fracassi & Immacolata Garzilli & Maria Nicoletta Moretti & Diego di Bernardo, 2011. "Construction and Modelling of an Inducible Positive Feedback Loop Stably Integrated in a Mammalian Cell-Line," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-11, June.
    15. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    16. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Global synchronization for a class of dynamical complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 543-556.
    17. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    18. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    19. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    20. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0128630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.