IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1280-d318905.html
   My bibliography  Save this article

Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Remote Island

Author

Listed:
  • Sajid Ali

    (Smart City Construction Engineering, University of Science & Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
    Department of Land, Water and Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Daehwa-dong 283, Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-do 10223, Korea)

  • Choon-Man Jang

    (Smart City Construction Engineering, University of Science & Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
    Department of Land, Water and Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Daehwa-dong 283, Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-do 10223, Korea)

Abstract

Renewable energy technologies can not only help in mitigating the greenhouse gas (GHG) emissions but it can also be very useful for electricity generation at remote locations, where no other means of power are available. The present study focuses on the techno-economic optimum design of a small hybrid renewable energy system (HRES) consisting of wind-solar as primary energy sources. The HRES was modelled for a remote island (Deokjeok-do Island, South Korea) using real electricity consumption data for one complete year. A daily mean load of 24,720 kWh was entered at Deokjeok-do Island with a peak load of 2291.54 kW. Average annual values of wind speed and daily solar radiations were estimated to be 3.6 m/s (10 m height) and 4.13 kWh/m 2 , respectively. A total of 8760 simulations were performed to achieve the hourly load demand of the mentioned island. In order to deal with the surplus and electricity deficit, two different types of energy storage systems (ESS) were modelled i.e., battery and pumped hydro storage (PHS). Four different HRESs were also evaluated as the most suitable based on levelized cost of energy (LCOE) and net present cost (NPC). A detailed economic break-down of each component and the impact of different sensitivity variables on decision making have also been discussed in detail.

Suggested Citation

  • Sajid Ali & Choon-Man Jang, 2020. "Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Remote Island," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1280-:d:318905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Eunil & Kwon, Sang Jib, 2016. "Renewable electricity generation systems for electric-powered taxis: The case of Daejeon metropolitan city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1466-1474.
    2. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
    3. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    4. Ali, Sajid & Lee, Sang-Moon & Jang, Choon-Man, 2018. "Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island – Incheon, South Korea," Renewable Energy, Elsevier, vol. 123(C), pages 652-663.
    5. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    6. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2015. "Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island," Sustainability, MDPI, vol. 7(10), pages 1-17, October.
    7. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.
    8. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2016. "The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India," Applied Energy, Elsevier, vol. 169(C), pages 370-383.
    9. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    10. Sajid Ali & Choon-Man Jang, 2020. "Evaluation of PV-Wind Hybrid Energy System for a Small Island," Chapters, in: Kenneth Eloghene Okedu & Ahmed Tahour & Abdel Ghani Aissaoui (ed.), Wind Solar Hybrid Renewable Energy System, IntechOpen.
    11. Pérez-Navarro, A. & Alfonso, D. & Álvarez, C. & Ibáñez, F. & Sánchez, C. & Segura, I., 2010. "Hybrid biomass-wind power plant for reliable energy generation," Renewable Energy, Elsevier, vol. 35(7), pages 1436-1443.
    12. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    13. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
    14. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    15. Nematollahi, Omid & Kim, Kyung Chun, 2017. "A feasibility study of solar energy in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 566-579.
    16. Eriksson, E.L.V. & Gray, E.MacA., 2017. "Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review," Applied Energy, Elsevier, vol. 202(C), pages 348-364.
    17. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    18. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    19. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    20. Kim, Heetae & Baek, Seoin & Park, Eunil & Chang, Hyun Joon, 2014. "Optimal green energy management in Jeju, South Korea – On-grid and off-grid electrification," Renewable Energy, Elsevier, vol. 69(C), pages 123-133.
    21. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    22. Kyeongsik Yoo & Eunil Park & Heetae Kim & Jay Y. Ohm & Taeyong Yang & Ki Joon Kim & Hyun Joon Chang & Angel P. Del Pobil, 2014. "Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea," Sustainability, MDPI, vol. 6(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Hussain, Moaid K. & Adzman, Mohd Rafi & Ghazali, Nur Hafizah & Ramli, Makbul A.M. & Khalil Zidane, Tekai Eddine, 2022. "A new optimization strategy for wind/diesel/battery hybrid energy system," Energy, Elsevier, vol. 239(PE).
    2. Tatiane Silva Costa & Marcelo Gradella Villalva, 2020. "Technical Evaluation of a PV-Diesel Hybrid System with Energy Storage: Case Study in the Tapajós-Arapiuns Extractive Reserve, Amazon, Brazil," Energies, MDPI, vol. 13(11), pages 1-22, June.
    3. Mohana Alanazi & Hani Attar & Ayman Amer & Ayesha Amjad & Mahmoud Mohamed & Mohammed Sh. Majid & Khalid Yahya & Mohamed Salem, 2023. "A Comprehensive Study on the Performance of Various Tracker Systems in Hybrid Renewable Energy Systems, Saudi Arabia," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    4. Rania M. Ghoniem & Ali Alahmer & Hegazy Rezk & Samer As’ad, 2023. "Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    5. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    6. Daniel Akinyele & Abraham Amole & Elijah Olabode & Ayobami Olusesi & Titus Ajewole, 2021. "Simulation and Analysis Approaches to Microgrid Systems Design: Emerging Trends and Sustainability Framework Application," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    7. Mérida García, Aida & Gallagher, John & Rodríguez Díaz, Juan Antonio & McNabola, Aonghus, 2024. "An economic and environmental optimization model for sizing a hybrid renewable energy and battery storage system in off-grid farms," Renewable Energy, Elsevier, vol. 220(C).
    8. Adrian Ioan Felea & Ioan Felea & Calin Radu Hoble, 2023. "Multicriteria Quantification of the Compatibility of the Targets from Romania’s Relevant Strategies with the European Green Deal," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    9. Hafiz Muhammad Abdullah & Sanghyoun Park & Kwanjae Seong & Sangyong Lee, 2023. "Hybrid Renewable Energy System Design: A Machine Learning Approach for Optimal Sizing with Net-Metering Costs," Sustainability, MDPI, vol. 15(11), pages 1-37, May.
    10. Panagiotis G. Kosmopoulos & Marios T. Mechilis & Panagiota Kaoura, 2022. "Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters," Energies, MDPI, vol. 15(24), pages 1-19, December.
    11. Hani Al-Rawashdeh & Omar Ali Al-Khashman & Jehad T. Al Bdour & Mohamed R. Gomaa & Hegazy Rezk & Abdullah Marashli & Laith M. Arrfou & Mohamed Louzazni, 2023. "Performance Analysis of a Hybrid Renewable-Energy System for Green Buildings to Improve Efficiency and Reduce GHG Emissions with Multiple Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-32, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    2. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    3. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    6. Sajid Ali & Choon-Man Jang, 2019. "Selection of Best-Suited Wind Turbines for New Wind Farm Sites Using Techno-Economic and GIS Analysis in South Korea," Energies, MDPI, vol. 12(16), pages 1-22, August.
    7. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    9. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    10. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    11. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Energy Optimization Strategies for Eco-Friendly Cellular Base Stations," Energies, MDPI, vol. 11(6), pages 1-22, June.
    12. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    13. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    14. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    15. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    16. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    17. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
    18. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.
    19. Chambon, Clementine L. & Karia, Tanuj & Sandwell, Philip & Hallett, Jason P., 2020. "Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India," Renewable Energy, Elsevier, vol. 154(C), pages 432-444.
    20. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1280-:d:318905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.