IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp797-809.html
   My bibliography  Save this article

A lifecycle-based sustainability indicator framework for waste-to-energy systems and a proposed metric of sustainability

Author

Listed:
  • Chong, Yih Tng
  • Teo, Kwong Meng
  • Tang, Loon Ching

Abstract

Studies of waste-to-energy systems have applied a varying range of indicators to assess their sustainability. The sets of indicators prescribed were often based on the respective context and are therefore of varying emphasis. Through a literature review, this research aims to develop a framework of sustainability indicators that can serve as a reference for future research in waste-to-energy systems. Sustainability indicators and their underlying factors from the three pillars of sustainability were consolidated and structured under a proposed framework. As factors interlinking between the three pillars such as carbon schemes are critical for sustainability, they were identified and described within the framework. The proposed framework is extended with a lifecycle dimension to facilitate lifecycle sustainability assessments. This article presents a novel metric of sustainability (MOS). The proposed indicator framework and the MOS are applied in a case study to demonstrate their functions in sustainability assessments. The case highlighted the advantages of the MOS and the importance of considering systems from a more holistic perspective, especially in practice where sustainability issues tend to fall within and across boundaries of the economic, environmental and social lifecycles.

Suggested Citation

  • Chong, Yih Tng & Teo, Kwong Meng & Tang, Loon Ching, 2016. "A lifecycle-based sustainability indicator framework for waste-to-energy systems and a proposed metric of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 797-809.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:797-809
    DOI: 10.1016/j.rser.2015.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115013015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. Blanca Antizar-Ladislao & Juan L. Turrion-Gomez, 2010. "Decentralized Energy from Waste Systems," Energies, MDPI, vol. 3(2), pages 1-12, January.
    3. Kothari, Richa & Tyagi, V.V. & Pathak, Ashish, 2010. "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3164-3170, December.
    4. Longden, David & Brammer, John & Bastin, Lucy & Cooper, Nic, 2007. "Distributed or centralised energy-from-waste policy? Implications of technology and scale at municipal level," Energy Policy, Elsevier, vol. 35(4), pages 2622-2634, April.
    5. Zhou, Zhaoqiu & Yin, Xiuli & Xu, Jie & Ma, Longlong, 2012. "The development situation of biomass gasification power generation in China," Energy Policy, Elsevier, vol. 51(C), pages 52-57.
    6. Ulgiati, S. & Ascione, M. & Bargigli, S. & Cherubini, F. & Franzese, P.P. & Raugei, M. & Viglia, S. & Zucaro, A., 2011. "Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective," Ecological Modelling, Elsevier, vol. 222(1), pages 176-189.
    7. Mangoyana, Robert B. & Smith, Timothy F., 2011. "Decentralised bioenergy systems: A review of opportunities and threats," Energy Policy, Elsevier, vol. 39(3), pages 1286-1295, March.
    8. McHenry, Mark P., 2012. "Small-scale (≤6 kWe) stand-alone and grid-connected photovoltaic, wind, hydroelectric, biodiesel, and wood gasification system’s simulated technical, economic, and mitigation analyses for rural region," Renewable Energy, Elsevier, vol. 38(1), pages 195-205.
    9. Mezzullo, William G. & McManus, Marcelle C. & Hammond, Geoff P., 2013. "Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste," Applied Energy, Elsevier, vol. 102(C), pages 657-664.
    10. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sue Ellen Taelman & Davide Tonini & Alexander Wandl & Jo Dewulf, 2018. "A Holistic Sustainability Framework for Waste Management in European Cities: Concept Development," Sustainability, MDPI, vol. 10(7), pages 1-33, June.
    2. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2021. "A Prospective Social Life Cycle Assessment (sLCA) of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    3. Philipp Kehrein & Mark van Loosdrecht & Patricia Osseweijer & John Posada & Jo Dewulf, 2020. "The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories," Sustainability, MDPI, vol. 12(10), pages 1-31, May.
    4. Lee, Sir Yee & Hu, Jiayao & Lim, Ming K, 2021. "Maximising the circular economy and sustainability outcomes: An end-of-life tyre recycling outlets selection model," International Journal of Production Economics, Elsevier, vol. 232(C).
    5. Kuznetsova, Elizaveta & Cardin, Michel-Alexandre & Diao, Mingzhen & Zhang, Sizhe, 2019. "Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 477-500.
    6. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Xueguo Xu & Tingting Xu & Meizeng Gui, 2020. "Incentive Mechanism for Municipal Solid Waste Disposal PPP Projects in China," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    8. Liu, Jianrui & Kua, Harn Wei & Wang, Chi-Hwa & Tong, Yen Wah & Zhang, Jingxin & Peng, Yinghong, 2023. "Extended exergy accounting theory to design waste-to-energy management system under uncertainty," Energy, Elsevier, vol. 278(PB).
    9. Vichan Nakthong & Kuskana Kubaha, 2019. "Development of a Sustainability Index for an Energy Management System in Thailand," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    10. Abbas Mardani & Dalia Streimikiene & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Mehrbakhsh Nilashi & Ahmad Jusoh & Habib Zare, 2017. "Application of Structural Equation Modeling (SEM) to Solve Environmental Sustainability Problems: A Comprehensive Review and Meta-Analysis," Sustainability, MDPI, vol. 9(10), pages 1-65, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    2. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    3. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    4. Tiwary, A. & Williams, I.D. & Pant, D.C. & Kishore, V.V.N., 2015. "Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 883-901.
    5. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    6. Umar, Mohd Shaharin & Urmee, Tania & Jennings, Philip, 2018. "A policy framework and industry roadmap model for sustainable oil palm biomass electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 128(PA), pages 275-284.
    7. Bluemling, Bettina & de Visser, Ina, 2013. "Overcoming the “club dilemma” of village-scale bioenergy projects—The case of India," Energy Policy, Elsevier, vol. 63(C), pages 18-25.
    8. Mahzouni, Arian, 2019. "The role of institutional entrepreneurship in emerging energy communities: The town of St. Peter in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 297-308.
    9. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    10. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    14. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    15. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    17. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    18. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    19. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    20. Ghalehkhondabi, Iman & Maihami, Reza & Ahmadi, Ehsan, 2020. "Optimal pricing and environmental improvement for a hazardous waste disposal supply chain with emission penalties," Utilities Policy, Elsevier, vol. 62(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:797-809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.