IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v103y2019icp477-500.html
   My bibliography  Save this article

Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design

Author

Listed:
  • Kuznetsova, Elizaveta
  • Cardin, Michel-Alexandre
  • Diao, Mingzhen
  • Zhang, Sizhe

Abstract

The rapid expansion of urban populations and concomitant increase in the generation of municipal solid waste (MSW) exert considerable pressure on the conventional centralized MSW management system and are beginning to exceed disposal capacities. To tackle this issue, the conventional centralized MSW management system is more likely to evolve toward a more decentralized system with smaller capacity waste treatment facilities that are integrated at different levels of the urban environment, e.g., buildings, districts, and municipalities. In addition, MSW can become an important urban resource to address the rising energy consumption through waste-to-energy (WTE) technologies capable of generating electricity, heat, and biogas. This shift toward the combined centralized-decentralized waste-to-energy management system (WtEMS) requires an adapted decision-support methodology (DSM) that can assist decision-makers in analyzing MSW generation across large urban territories and designing optimal long-term WtEMS.

Suggested Citation

  • Kuznetsova, Elizaveta & Cardin, Michel-Alexandre & Diao, Mingzhen & Zhang, Sizhe, 2019. "Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 477-500.
  • Handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:477-500
    DOI: 10.1016/j.rser.2018.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118308165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kayakutlu, Gulgun & Daim, Tugrul & Kunt, Meltem & Altay, Ayca & Suharto, Yulianto, 2017. "Scenarios for regional waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1323-1335.
    2. Chen Zhong & Markus Schläpfer & Stefan Müller Arisona & Michael Batty & Carlo Ratti & Gerhard Schmitt, 2017. "Revealing centrality in the spatial structure of cities from human activity patterns," Urban Studies, Urban Studies Journal Limited, vol. 54(2), pages 437-455, February.
    3. Xiong, Jie & Ng, Tsan Sheng Adam & Wang, Shuming, 2016. "An optimization model for economic feasibility analysis and design of decentralized waste-to-energy systems," Energy, Elsevier, vol. 101(C), pages 239-251.
    4. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    5. Korai, Muhammad Safar & Mahar, Rasool Bux & Uqaili, Muhammad Aslam, 2017. "The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 338-353.
    6. John Haldi & David Whitcomb, 1967. "Economies of Scale in Industrial Plants," Journal of Political Economy, University of Chicago Press, vol. 75(4), pages 373-373.
    7. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Sarker, M., 2015. "Energy scarcity and potential of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1636-1649.
    8. Michel-Alexandre Cardin & Qihui Xie & Tsan Sheng Ng & Shuming Wang & Junfei Hu, 2017. "An approach for analyzing and managing flexibility in engineering systems design based on decision rules and multistage stochastic programming," IISE Transactions, Taylor & Francis Journals, vol. 49(1), pages 1-12, January.
    9. Chong, Yih Tng & Teo, Kwong Meng & Tang, Loon Ching, 2016. "A lifecycle-based sustainability indicator framework for waste-to-energy systems and a proposed metric of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 797-809.
    10. Aakil M. Caunhye & Michel-Alexandre Cardin, 2017. "An approach based on robust optimization and decision rules for analyzing real options in engineering systems design," IISE Transactions, Taylor & Francis Journals, vol. 49(8), pages 753-767, August.
    11. He, Zhou & Xiong, Jie & Ng, Tsan Sheng & Fan, Bo & Shoemaker, Christine A., 2017. "Managing competitive municipal solid waste treatment systems: An agent-based approach," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1063-1077.
    12. Chunxia, Yang & Xueshuai, Zhu & Luoluo, Jiang & Sen, Hu & He, Li, 2016. "Study on the contagion among American industries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 601-612.
    13. Li, Shaofang & Marinč, Matej, 2016. "Competition in the clearing and settlement industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 40(C), pages 134-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Eftychia Ntostoglou & Dilip Khatiwada & Viktoria Martin, 2021. "The Potential Contribution of Decentralized Anaerobic Digestion towards Urban Biowaste Recovery Systems: A Scoping Review," Sustainability, MDPI, vol. 13(23), pages 1-21, December.
    3. Eryganov, Ivan & Šomplák, Radovan & Nevrlý, Vlastimír & Osicka, Ondrej & Procházka, Vít, 2022. "Cost-effective municipal unions formation within intermediate regions under prioritized waste energy recovery," Energy, Elsevier, vol. 256(C).
    4. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Anna E. Tovkach & John C. Boyle & Enoch A. Nagelli & Corey M. James & Pamela L. Sheehan & Andrew R. Pfluger, 2023. "Structured decision making for assessment of solid waste-to-energy systems for decentralized onsite applications," Environment Systems and Decisions, Springer, vol. 43(1), pages 54-71, March.
    6. Ramezani, Mohammad & Khazaei, Moein & Gholian-Jouybari, Fatemeh & Sandoval-Correa, Alejandro & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Turquoise hydrogen and waste optimization: A Bi-objective closed-loop and sustainable supply chain model for a case in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    7. Xu, Jiuping & Huang, Yidan & Shi, Yi & Li, Ruolan, 2022. "Reverse supply chain management approach for municipal solid waste with waste sorting subsidy policy," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    8. Wang, Shule & Yang, Hanmin & Shi, Ziyi & Zaini, Ilman Nuran & Wen, Yuming & Jiang, Jianchun & Jönsson, Pär Göran & Yang, Weihong, 2022. "Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept," Energy, Elsevier, vol. 252(C).
    9. Liu, Jianrui & Kua, Harn Wei & Wang, Chi-Hwa & Tong, Yen Wah & Zhang, Jingxin & Peng, Yinghong, 2023. "Extended exergy accounting theory to design waste-to-energy management system under uncertainty," Energy, Elsevier, vol. 278(PB).
    10. Xue, Shengrong & Zhang, Siqi & Wang, Ying & Wang, Yanbo & Song, Jinghui & Lyu, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2022. "What can we learn from the experience of European countries in biomethane industry: Taking China as an example?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Teng, Sin Yong & Máša, Vítězslav & Touš, Michal & Vondra, Marek & Lam, Hon Loong & Stehlík, Petr, 2022. "Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach," Renewable Energy, Elsevier, vol. 181(C), pages 142-155.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Xiong & Shuming Wang & Tsan Sheng Ng, 2021. "Robust Bilevel Resource Recovery Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 2962-2992, September.
    2. Sixiang Zhao, 2023. "Decision rule-based method in solving adjustable robust capacity expansion problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(2), pages 259-286, April.
    3. Caunhye, Aakil M. & Cardin, Michel-Alexandre, 2018. "Towards more resilient integrated power grid capacity expansion: A robust optimization approach with operational flexibility," Energy Economics, Elsevier, vol. 72(C), pages 20-34.
    4. Liu, Jianrui & Kua, Harn Wei & Wang, Chi-Hwa & Tong, Yen Wah & Zhang, Jingxin & Peng, Yinghong, 2023. "Extended exergy accounting theory to design waste-to-energy management system under uncertainty," Energy, Elsevier, vol. 278(PB).
    5. Margarita Genius & Spiro Stefanou & Vangelis Tzouvelekas, 2009. "Productivity Growth and Efficiency under Leontief Technology: An Application to US Steam-Electric Power Generation Utilities," Working Papers 0913, University of Crete, Department of Economics.
    6. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    7. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    8. Jung, Hanjoon Michael, 2011. "A Simple Model of Dairy Product Supply," MPRA Paper 29653, University Library of Munich, Germany.
    9. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Langhammer, Rolf J. & Hiemenz, Ulrich, 1990. "Regional integration among developing countries: opportunities, obstacles and options," Open Access Publications from Kiel Institute for the World Economy 416, Kiel Institute for the World Economy (IfW Kiel).
    11. Ihsanullah Sohoo & Marco Ritzkowski & Kerstin Kuchta & Senem Önen Cinar, 2020. "Environmental Sustainability Enhancement of Waste Disposal Sites in Developing Countries through Controlling Greenhouse Gas Emissions," Sustainability, MDPI, vol. 13(1), pages 1-12, December.
    12. Peharz, Gerhard & Ulm, Andreas, 2018. "Quantifying the influence of colors on the performance of c-Si photovoltaic devices," Renewable Energy, Elsevier, vol. 129(PA), pages 299-308.
    13. Leonardo Juan Ramirez Lopez & Angela Ivette Grijalba Castro, 2020. "Sustainability and Resilience in Smart City Planning: A Review," Sustainability, MDPI, vol. 13(1), pages 1-25, December.
    14. Seven Ipek & Cumhur Ekinci, 2022. "Cost efficiency in financial exchanges and post-trade infrastructures: a closer look at integration and product diversification," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 705-743, December.
    15. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Abbas Mardani & Dalia Streimikiene & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Mehrbakhsh Nilashi & Ahmad Jusoh & Habib Zare, 2017. "Application of Structural Equation Modeling (SEM) to Solve Environmental Sustainability Problems: A Comprehensive Review and Meta-Analysis," Sustainability, MDPI, vol. 9(10), pages 1-65, October.
    17. Lim, Kyuseong & Kim, Sehyun & Kim, Soo Yong, 2017. "Information transfer across intra/inter-structure of CDS and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 118-126.
    18. Nolan, Tahlia, 2024. "Is pivoting offshore the right policy for achieving decarbonisation in the state of Victoria, Australia's electricity sector?," Energy Policy, Elsevier, vol. 190(C).
    19. Iwona Bisaga & Priti Parikh & Yacob Mulugetta & Yohannes Hailu, 2019. "The potential of performance targets (imihigo) as drivers of energy planning and extending access to off‐grid energy in rural Rwanda," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    20. Philipp Kehrein & Mark van Loosdrecht & Patricia Osseweijer & John Posada & Jo Dewulf, 2020. "The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories," Sustainability, MDPI, vol. 12(10), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:477-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.