IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4587-d260419.html
   My bibliography  Save this article

Development of a Sustainability Index for an Energy Management System in Thailand

Author

Listed:
  • Vichan Nakthong

    (Division of Energy Management Technology, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand)

  • Kuskana Kubaha

    (Division of Energy Management Technology, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand)

Abstract

The ISO 50001 energy management system (EnMS) standard was published in June 2011 and has been widely adopted by organizations from around the world, including Thailand. From 2014–2017, there was a continuous increase in the number of ISO 50001-certified companies in the East Asia and Pacific regions and, more broadly, the world, although this is not consistent with the number of companies that emerged during this period in Thailand. This information shows that the implementation of energy management in some companies may not be sustainable. This research offers a novel method for assessing the quality of energy management in the form of an energy management system sustainability index (EnMS SI) framework, presenting the economic, organizational, energy performance, and environmental aspects of sustainable energy management. Data collection, from a literature review of related research and the EnMS good practices, was implemented in order to select sustainability indicators and further develop a sustainability index for energy management. The analytic hierarchy process (AHP) and weighted arithmetic mean (WAM) were used to establish an EnMS SI. The study results were then assessed and validated using 31 ISO 50001-certified companies in Thailand. Direct interviews and questionnaires were used to obtain responses from energy management representatives. The studied data indicated that an EnMS SI framework can be used in qualitative analyses to effectively determine the sustainability of an EnMS. Significant sustainability indicators, consisting of continuous benefits, top management commitment, and long-term strategic planning, were found. The results also revealed that the EnMS in Thailand has been significantly economically weak. The EnMS SI framework is a tool for assessing energy management sustainability, which allows for the determination of an organization’s actual strengths and weaknesses. The benefits of this framework include the possibility of determining guidelines for correcting and improving the EnMS to achieve sustainability.

Suggested Citation

  • Vichan Nakthong & Kuskana Kubaha, 2019. "Development of a Sustainability Index for an Energy Management System in Thailand," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4587-:d:260419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madlool, N.A. & Saidur, R. & Hossain, M.S. & Rahim, N.A., 2011. "A critical review on energy use and savings in the cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2042-2060, May.
    2. Pham, Thi Hong Hanh, 2015. "Energy management systems and market value: Is there a link?," Economic Modelling, Elsevier, vol. 46(C), pages 70-78.
    3. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    4. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    5. Afgan, Naim H. & Carvalho, Maria G. & Hovanov, Nikolai V., 2000. "Energy system assessment with sustainability indicators," Energy Policy, Elsevier, vol. 28(9), pages 603-612, July.
    6. Ngai, E.W.T & Chau, D.C.K. & Poon, J.K.L. & To, C.K.M., 2013. "Energy and utility management maturity model for sustainable manufacturing process," International Journal of Production Economics, Elsevier, vol. 146(2), pages 453-464.
    7. McKane, Aimee & Therkelsen, Peter & Scodel, Anna & Rao, Prakash & Aghajanzadeh, Arian & Hirzel, Simon & Zhang, Ruiqin & Prem, Richard & Fossa, Alberto & Lazarevska, Ana M. & Matteini, Marco & Schreck,, 2017. "Predicting the quantifiable impacts of ISO 50001 on climate change mitigation," Energy Policy, Elsevier, vol. 107(C), pages 278-288.
    8. Rafael Uriarte-Romero & Margarita Gil-Samaniego & Edgar Valenzuela-Mondaca & Juan Ceballos-Corral, 2017. "Methodology for the Successful Integration of an Energy Management System to an Operational Environmental System," Sustainability, MDPI, vol. 9(8), pages 1-9, July.
    9. Antunes, Pedro & Carreira, Paulo & Mira da Silva, Miguel, 2014. "Towards an energy management maturity model," Energy Policy, Elsevier, vol. 73(C), pages 803-814.
    10. Silvia Martínez-Perales & Isabel Ortiz-Marcos & Jesús Juan Ruiz & Francisco Javier Lázaro, 2018. "Using Certification as a Tool to Develop Sustainability in Project Management," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    11. Goldrath, T. & Ayalon, O. & Shechter, M., 2015. "A combined sustainability index for electricity efficiency measures," Energy Policy, Elsevier, vol. 86(C), pages 574-584.
    12. Sanober Hassan Khattak & Michael Oates & Rick Greenough, 2018. "Towards Improved Energy and Resource Management in Manufacturing," Energies, MDPI, vol. 11(4), pages 1-15, April.
    13. Su, Te-Li & Chan, David Yih-Liang & Hung, Ching-Yuan & Hong, Gui-Bing, 2013. "The status of energy conservation in Taiwan's cement industry," Energy Policy, Elsevier, vol. 60(C), pages 481-486.
    14. Palm, Jenny & Thollander, Patrik, 2010. "An interdisciplinary perspective on industrial energy efficiency," Applied Energy, Elsevier, vol. 87(10), pages 3255-3261, October.
    15. Thollander, Patrik & Karlsson, Magnus & Söderström, Mats & Creutz, Dan, 2005. "Reducing industrial energy costs through energy-efficiency measures in a liberalized European electricity market: case study of a Swedish iron foundry," Applied Energy, Elsevier, vol. 81(2), pages 115-126, June.
    16. Thi Hong Hanh Pham, 2015. "Energy management systems and market value: Is there a link?," Post-Print hal-03705802, HAL.
    17. Miguel F. Salvado & Susana G. Azevedo & João C. O. Matias & Luís M. Ferreira, 2015. "Proposal of a Sustainability Index for the Automotive Industry," Sustainability, MDPI, vol. 7(2), pages 1-32, February.
    18. Chong, Yih Tng & Teo, Kwong Meng & Tang, Loon Ching, 2016. "A lifecycle-based sustainability indicator framework for waste-to-energy systems and a proposed metric of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 797-809.
    19. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    20. Iker Laskurain & Ander Ibarloza & Ainara Larrea & Erlantz Allur, 2017. "Contribution to Energy Management of the Main Standards for Environmental Management Systems: The Case of ISO 14001 and EMAS," Energies, MDPI, vol. 10(11), pages 1-21, November.
    21. Frederic Marimon & Martí Casadesús, 2017. "Reasons to Adopt ISO 50001 Energy Management System," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    22. Yang, Yulan & Li, Baizhan & Yao, Runming, 2010. "A method of identifying and weighting indicators of energy efficiency assessment in Chinese residential buildings," Energy Policy, Elsevier, vol. 38(12), pages 7687-7697, December.
    23. Naim Hamdia Afgan, 2010. "Sustainability Paradigm: Intelligent Energy System," Sustainability, MDPI, vol. 2(12), pages 1-19, December.
    24. Tsung-Yung Chiu & Shang-Lien Lo & Yung-Yin Tsai, 2012. "Establishing an Integration-Energy-Practice Model for Improving Energy Performance Indicators in ISO 50001 Energy Management Systems," Energies, MDPI, vol. 5(12), pages 1-16, December.
    25. Reed, Mark S. & Fraser, Evan D.G. & Dougill, Andrew J., 2006. "An adaptive learning process for developing and applying sustainability indicators with local communities," Ecological Economics, Elsevier, vol. 59(4), pages 406-418, October.
    26. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    27. Ma, Chih-Ming & Chen, Ming-Hue & Hong, Gui-Bing, 2012. "Energy conservation status in Taiwanese food industry," Energy Policy, Elsevier, vol. 50(C), pages 458-463.
    28. Finnerty, Noel & Sterling, Raymond & Contreras, Sergio & Coakley, Daniel & Keane, Marcus M., 2018. "Defining corporate energy policy and strategy to achieve carbon emissions reduction targets via energy management in non-energy intensive multi-site manufacturing organisations," Energy, Elsevier, vol. 151(C), pages 913-929.
    29. Ates, Seyithan Ahmet & Durakbasa, Numan M., 2012. "Evaluation of corporate energy management practices of energy intensive industries in Turkey," Energy, Elsevier, vol. 45(1), pages 81-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Ligus & Piotr Peternek, 2021. "The Sustainable Energy Development Index—An Application for European Union Member States," Energies, MDPI, vol. 14(4), pages 1-32, February.
    2. Izabela Simon Rampasso & Geraldo Pereira Melo Filho & Rosley Anholon & Robson Amarante de Araujo & Gilson Brito Alves Lima & Luis Perez Zotes & Walter Leal Filho, 2019. "Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    3. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izabela Simon Rampasso & Geraldo Pereira Melo Filho & Rosley Anholon & Robson Amarante de Araujo & Gilson Brito Alves Lima & Luis Perez Zotes & Walter Leal Filho, 2019. "Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    2. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    3. Milena Nebojsa Rajić & Rado M. Maksimović & Pedja Milosavljević, 2022. "Energy Management Model for Sustainable Development in Hotels within WB6," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    4. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    5. Hossain, Syed Raihan & Ahmed, Istiak & Azad, Ferdous S. & Monjurul Hasan, A S M, 2020. "Empirical investigation of energy management practices in cement industries of Bangladesh," Energy, Elsevier, vol. 212(C).
    6. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    7. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    8. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    9. Carlos Herce & Enrico Biele & Chiara Martini & Marcello Salvio & Claudia Toro, 2021. "Impact of Energy Monitoring and Management Systems on the Implementation and Planning of Energy Performance Improved Actions: An Empirical Analysis Based on Energy Audits in Italy," Energies, MDPI, vol. 14(16), pages 1-21, August.
    10. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    11. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.
    12. Fernando, Yudi & Bee, Poh Swan & Jabbour, Charbel Jose Chiappetta & Thomé, Antônio Márcio Tavares, 2018. "Understanding the effects of energy management practices on renewable energy supply chains: Implications for energy policy in emerging economies," Energy Policy, Elsevier, vol. 118(C), pages 418-428.
    13. Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    14. Liudmyla Davydenko & Nina Davydenko & Andrii Bosak & Alla Bosak & Agnieszka Deja & Tygran Dzhuguryan, 2022. "Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging," Energies, MDPI, vol. 15(10), pages 1-27, May.
    15. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    16. Milena N. Rajić & Rado M. Maksimović & Pedja Milosavljević & Dragan Pavlović, 2019. "Energy Management System Application for Sustainable Development in Wood Industry Enterprises," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    17. Stamatis Chrysikopoulos & Panos Chountalas, 2018. "Integrating energy and environmental management systems to enable facilities to qualify for carbon funds," Energy & Environment, , vol. 29(6), pages 938-956, September.
    18. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.
    19. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    20. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4587-:d:260419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.