IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v54y2016icp110-119.html
   My bibliography  Save this article

Wind tunnel experimental analysis of a complex terrain micrositing

Author

Listed:
  • Mattuella, J.M.L.
  • Loredo-Souza, A.M.
  • Oliveira, M.G.K.
  • Petry, A.P.

Abstract

The technical and economic feasibility of wind energy projects are defined by identifying the correct wind potential in the site and by the technological choice of equipment. The optimal micrositing of wind turbines determines the success of the project. Most current tools are insufficient to evaluate air flow in a complex terrain where wind effects such as acceleration, deceleration are difficult to be predicted The uncertainties related to the energy outcome present an increasing problem as the precision regarding the amount of the energy that may be commercialized is even higher. The combined use of wind tunnel and mesoscale numerical modeling represents the solution for wind power site assessment in a complex terrain. This paper presents a review of the contribution that wind tunnels have recently made for physical modeling of both the velocity field and the turbulence intensity as a methodology for the atmospheric boundary layer study in a complex terrain. Hence, it describes an experimental simulation of the atmospheric boundary layer (ABL) in a wind tunnel over a complex area to characterize the mean flow (detachment and reattachment) and the turbulence intensity with emphasis in the wind energy production. The experiment was conducted in a wind tunnel and employed two terrain categories: Category I – plain terrain and Category III-IV – moderately rough, corresponding, respectively, to the power law exponent p=0.11 and p=0.23. The complex terrain wind profiles were correlated with that in the plain terrain to show the changes of the velocity and show the extension of turbulence wake caused the by variable topography of the area. The measurements of the wind velocity and turbulence intensity were performed with a hot wire anemometry system. Results demonstrate that velocity profile and turbulence intensity profile vary significantly over the complex area, which makes an accurate experimental evaluation necessary to certify the micrositing layout. Power losses due to wake effects can easily reach 20% of the total power, which may make a plant infeasible.

Suggested Citation

  • Mattuella, J.M.L. & Loredo-Souza, A.M. & Oliveira, M.G.K. & Petry, A.P., 2016. "Wind tunnel experimental analysis of a complex terrain micrositing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 110-119.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:110-119
    DOI: 10.1016/j.rser.2015.09.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115010588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.09.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonardo P. Chamorro & Fernando Porté-Agel, 2011. "Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study," Energies, MDPI, vol. 4(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radünz, William Corrêa & Sakagami, Yoshiaki & Haas, Reinaldo & Petry, Adriane Prisco & Passos, Júlio César & Miqueletti, Mayara & Dias, Eduardo, 2021. "Influence of atmospheric stability on wind farm performance in complex terrain," Applied Energy, Elsevier, vol. 282(PA).
    2. Li, Qing’an & Kamada, Yasunari & Maeda, Takao & Yamada, Keisuke, 2020. "Investigations of flow field around two-dimensional simplified models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 152(C), pages 270-282.
    3. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.
    4. Kamada, Yasunari & Li, Qing'an & Maeda, Takao & Yamada, Keisuke, 2019. "Wind tunnel experimental investigation of flow field around two-dimensional single hill models," Renewable Energy, Elsevier, vol. 136(C), pages 1107-1118.
    5. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
    6. Florian Achermann & Thomas Stastny & Bogdan Danciu & Andrey Kolobov & Jen Jen Chung & Roland Siegwart & Nicholas Lawrance, 2024. "WindSeer: real-time volumetric wind prediction over complex terrain aboard a small uncrewed aerial vehicle," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kale, Baris & Buckingham, Sophia & van Beeck, Jeroen & Cuerva-Tejero, Alvaro, 2023. "Comparison of the wake characteristics and aerodynamic response of a wind turbine under varying atmospheric conditions using WRF-LES-GAD and WRF-LES-GAL wind turbine models," Renewable Energy, Elsevier, vol. 216(C).
    2. Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
    3. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    4. Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Sun, Haiying & Yang, Hongxing, 2020. "Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model," Renewable Energy, Elsevier, vol. 147(P1), pages 192-203.
    6. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
    7. Jae-ho Jeong & Kwangtae Ha, 2020. "Evaluation of Wind Flow Characteristics by RANS-Based Numerical Site Calibration (NSC) Method with Met-Tower Measurements and Its Application to a Complex Terrain," Energies, MDPI, vol. 13(19), pages 1-16, October.
    8. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    9. Karina Soto-Rivas & David Richter & Cristian Escauriaza, 2019. "A Formulation of the Thrust Coefficient for Representing Finite-Sized Farms of Tidal Energy Converters," Energies, MDPI, vol. 12(20), pages 1-17, October.
    10. C. A. Lopez-Villalobos & O. Rodriguez-Hernandez & R. Campos-Amezcua & Guillermo Hernandez-Cruz & O. A. Jaramillo & J. L. Mendoza, 2018. "Wind Turbulence Intensity at La Ventosa, Mexico: A Comparative Study with the IEC61400 Standards," Energies, MDPI, vol. 11(11), pages 1-19, November.
    11. Dai, Xuan & Xu, Da & Zhang, Mengqi & Stevens, Richard J.A.M., 2022. "A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics," Renewable Energy, Elsevier, vol. 191(C), pages 608-624.
    12. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Böhme, Gustavo S. & Fadigas, Eliane A. & Gimenes, André L.V. & Tassinari, Carlos E.M., 2018. "Wake effect measurement in complex terrain - A case study in Brazilian wind farms," Energy, Elsevier, vol. 161(C), pages 277-283.
    14. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    15. Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
    16. Tanmoy Chatterjee & Yulia T. Peet, 2020. "Dynamics of Large Scale Turbulence in Finite-Sized Wind Farm Canopy Using Proper Orthogonal Decomposition and a Novel Fourier-POD Framework," Energies, MDPI, vol. 13(7), pages 1-25, April.
    17. Kumer, Valerie-M. & Reuder, Joachim & Dorninger, Manfred & Zauner, Rudolf & Grubišić, Vanda, 2016. "Turbulent kinetic energy estimates from profiling wind LiDAR measurements and their potential for wind energy applications," Renewable Energy, Elsevier, vol. 99(C), pages 898-910.
    18. Zhaobin Li & Xiaohao Liu & Xiaolei Yang, 2022. "Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes," Energies, MDPI, vol. 15(18), pages 1-28, September.
    19. Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2017. "A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines," Energy, Elsevier, vol. 121(C), pages 341-355.
    20. Newman, A. Jensen & Cal, Raúl Bayoán & Castillo, Luciano, 2015. "Blade number effects in a scaled down wind farm," Renewable Energy, Elsevier, vol. 81(C), pages 472-481.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:110-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.