IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp270-282.html
   My bibliography  Save this article

Investigations of flow field around two-dimensional simplified models with wind tunnel experiments

Author

Listed:
  • Li, Qing’an
  • Kamada, Yasunari
  • Maeda, Takao
  • Yamada, Keisuke

Abstract

The effect of topographic features on wind velocity and turbulence intensity was evaluated by conducting wind tunnel experiments with Particle Image Velocimetry (PIV) system. In this study, to simulate the natural wind characteristics, the active turbulence grids and boundary layer generation frame were installed in the wind tunnel. The mean wind velocity, the velocity vector diagram and the turbulence intensity around the two-dimensional single simplified models were investigated. As a result, the flow was separated at the simplified model tip in all cases of models, and the countercurrent flow field was generated at the downstream side. Moreover, the clockwise circulation flow also moved to the upstream side in the case of large radius R. RX was followed by the name given the radius value of X. For the mainstream turbulence intensity, the ranges of high turbulence intensity were z/H < 2.8 for R1 model, z/H < 2.6 for R3 model, z/H < 2.5 for R6 model, z/H < 2.4 for R11 model, z/H < 2.2 for R20 model, z/H < 2.0 for R23 model, z/H < 1.9 for R25 model in the vertical direction. The quantitative measurement results of this paper provided a database for the validation of the wind velocity distributions of atmospheric turbulent flow in the hill and mountain regions.

Suggested Citation

  • Li, Qing’an & Kamada, Yasunari & Maeda, Takao & Yamada, Keisuke, 2020. "Investigations of flow field around two-dimensional simplified models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 152(C), pages 270-282.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:270-282
    DOI: 10.1016/j.renene.2019.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119319184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance)," Energy, Elsevier, vol. 113(C), pages 713-722.
    2. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
    3. Mattuella, J.M.L. & Loredo-Souza, A.M. & Oliveira, M.G.K. & Petry, A.P., 2016. "Wind tunnel experimental analysis of a complex terrain micrositing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 110-119.
    4. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (Part II: Dynamic pressure measurement)," Energy, Elsevier, vol. 112(C), pages 574-587.
    5. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: Static pressure measurement)," Energy, Elsevier, vol. 111(C), pages 701-712.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamada, Yasunari & Li, Qing'an & Maeda, Takao & Yamada, Keisuke, 2019. "Wind tunnel experimental investigation of flow field around two-dimensional single hill models," Renewable Energy, Elsevier, vol. 136(C), pages 1107-1118.
    2. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    3. Wu, Guangxing & Zhang, Chaoyu & Cai, Chang & Yang, Ke & Shi, Kezhong, 2020. "Uncertainty prediction on the angle of attack of wind turbine blades based on the field measurements," Energy, Elsevier, vol. 200(C).
    4. Li, Qing'an & Xu, Jianzhong & Maeda, Takao & Kamada, Yasunari & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2019. "Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer," Energy, Elsevier, vol. 183(C), pages 341-357.
    5. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Nishida, Yusuke, 2017. "Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of Horizontal Axis Wind Turbine in turbulent inflows," Energy, Elsevier, vol. 135(C), pages 799-810.
    6. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    7. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    8. Wu, Zhenlong & Bangga, Galih & Cao, Yihua, 2019. "Effects of lateral wind gusts on vertical axis wind turbines," Energy, Elsevier, vol. 167(C), pages 1212-1223.
    9. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    10. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Yusuke, Nishida, 2016. "Effect of turbulence on power performance of a Horizontal Axis Wind Turbine in yawed and no-yawed flow conditions," Energy, Elsevier, vol. 109(C), pages 703-711.
    11. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments," Energy, Elsevier, vol. 141(C), pages 262-272.
    13. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    14. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    15. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    16. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    17. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    18. Li, Qing'an & Wang, Ye & Kamada, Yasunari & Maeda, Takao & Xu, Jianzhong & Zhou, Shuni & Zhang, Fanghong & Cai, Chang, 2022. "Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements," Energy, Elsevier, vol. 238(PB).
    19. Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
    20. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:270-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.