IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i8p1874-1879.html
   My bibliography  Save this article

A study on the economic efficiency of hydrogen production from biomass residues in China

Author

Listed:
  • Lv, Pengmei
  • Wu, Chuangzhi
  • Ma, Longlong
  • Yuan, Zhenhong

Abstract

As part of Pilot Project of KIP of CAS, a feasibility study of hydrogen production system using biomass residues is conducted. This study is based on a process of oxygen-rich air gasification of biomass in a downdraft gasifier plus CO-shift. The capacity of this system is 6.4tbiomass/d. Applying this system, it is expected that an annual production of 480billionNm3 H2 will be generated for domestic supply in China. The capital cost of the plant used in this study is 1328$/(Nm3/h) H2 out, and product supply cost is 0.15$/Nm3 H2. The cost sensitivity analysis on this system tells that electricity and catalyst cost are the two most important factors to influence hydrogen production cost.

Suggested Citation

  • Lv, Pengmei & Wu, Chuangzhi & Ma, Longlong & Yuan, Zhenhong, 2008. "A study on the economic efficiency of hydrogen production from biomass residues in China," Renewable Energy, Elsevier, vol. 33(8), pages 1874-1879.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:8:p:1874-1879
    DOI: 10.1016/j.renene.2007.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107003370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    2. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    3. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    4. Ahmad, Anis Atikah & Zawawi, Norfadhila Abdullah & Kasim, Farizul Hafiz & Inayat, Abrar & Khasri, Azduwin, 2016. "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1333-1347.
    5. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    6. Hosseinzadeh, Ahmad & Zhou, John L. & Li, Xiaowei & Afsari, Morteza & Altaee, Ali, 2022. "Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
    8. Tomonori Miyagawa & Mika Goto, 2022. "Hydrogen Production Cost Forecasts since the 1970s and Implications for Technological Development," Energies, MDPI, vol. 15(12), pages 1-24, June.
    9. Wang, Yinglong & Li, Guoxuan & Liu, Zhiqiang & Cui, Peizhe & Zhu, Zhaoyou & Yang, Sheng, 2019. "Techno-economic analysis of biomass-to-hydrogen process in comparison with coal-to-hydrogen process," Energy, Elsevier, vol. 185(C), pages 1063-1075.
    10. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun & Scipioni, Antonio & Mazzi, Anna, 2015. "Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1217-1229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:8:p:1874-1879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.