IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v41y2015icp915-931.html
   My bibliography  Save this article

Modelling solar potential in the urban environment: State-of-the-art review

Author

Listed:
  • Freitas, S.
  • Catita, C.
  • Redweik, P.
  • Brito, M.C.

Abstract

Cityscapes provide a complex environment, where solar radiation is unevenly distributed, especially since urban features started to propagate more and more vertically. Due to the dynamic overshadowing effects present on building surfaces, quantifying these phenomena is essential for predicting reductions in solar radiation availability that can significantly affect potential for solar energy use. Numerical radiation algorithms coupled with GIS tools are a pathway to evaluate those complex effects. Accurate representation of the terrain, vegetation canopy and building structures allows better estimation of shadow patterns. Higher spatial and temporal resolutions deliver more detailed results, but models must compromise between accuracy and computation time. In this paper, models ranging from simple 2D visualization and solar constant methods, to more sophisticated 3D representation and analysis, are reviewed. Web-based solar maps, which rely on the previous features to successfully communicate the benefits of the solar resource to the public and support in the policy-making process, are also addressed.

Suggested Citation

  • Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
  • Handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:915-931
    DOI: 10.1016/j.rser.2014.08.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114007461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.08.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    2. Chwieduk, Dorota A., 2009. "Recommendation on modelling of solar energy incident on a building envelope," Renewable Energy, Elsevier, vol. 34(3), pages 736-741.
    3. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    4. Rakovec, Jože & Zakšek, Klemen, 2012. "On the proper analytical expression for the sky-view factor and the diffuse irradiation of a slope for an isotropic sky," Renewable Energy, Elsevier, vol. 37(1), pages 440-444.
    5. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    6. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    7. Grigiante, M. & Mottes, F. & Zardi, D. & de Franceschi, M., 2011. "Experimental solar radiation measurements and their effectiveness in setting up a real-sky irradiance model," Renewable Energy, Elsevier, vol. 36(1), pages 1-8.
    8. Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
    9. Littlefair, Paul, 1998. "Passive solar urban design : ensuring the penetration of solar energy into the city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(3), pages 303-326, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    2. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    3. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    4. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    5. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    6. Tucho, Gudina Terefe & Weesie, Peter D.M. & Nonhebel, Sanderine, 2014. "Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 422-431.
    7. Sarmiento, Nilsa & Belmonte, Silvina & Dellicompagni, Pablo & Franco, Judith & Escalante, Karina & Sarmiento, Joaquín, 2019. "A solar irradiation GIS as decision support tool for the Province of Salta, Argentina," Renewable Energy, Elsevier, vol. 132(C), pages 68-80.
    8. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
    9. Ahmad, Naseer & Sheikh, Anwar K. & Gandhidasan, P. & Elshafie, Moustafa, 2015. "Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: A case study for Dhahran city, Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 433-447.
    10. Luis Ramirez Camargo & Judith Franco & Nilsa María Sarmiento Babieri & Silvina Belmonte & Karina Escalante & Raphaela Pagany & Wolfgang Dorner, 2016. "Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina," Energies, MDPI, vol. 9(3), pages 1-21, February.
    11. Pavlovic, Tomislav M. & Milosavljevic, Dragana D. & Mirjanic, Dragoljub & Pantic, Lana S. & Radonjic, Ivana S. & Pirsl, Danica, 2013. "Assessments and perspectives of PV solar power engineering in the Republic of Srpska (Bosnia and Herzegovina)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 119-133.
    12. Chinnici, Gaetano & D’Amico, Mario & Rizzo, Marcella & Pecorino, Biagio, 2015. "Analysis of biomass availability for energy use in Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1025-1030.
    13. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    14. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    15. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    16. Kim, Byungil & Han, SangUk & Heo, Jae & Jung, Jaehoon, 2020. "Proof-of-concept of a two-stage approach for selecting suitable slopes on a highway network for solar photovoltaic systems: A case study in South Korea," Renewable Energy, Elsevier, vol. 151(C), pages 366-377.
    17. Ceballos-Fuentealba, Irlanda & Álvarez-Miranda, Eduardo & Torres-Fuchslocher, Carlos & del Campo-Hitschfeld, María Luisa & Díaz-Guerrero, John, 2019. "A simulation and optimisation methodology for choosing energy efficiency measures in non-residential buildings," Applied Energy, Elsevier, vol. 256(C).
    18. Luis Arribas & Yolanda Lechón & Alberto Perula & Javier Domínguez & Manuel Ferres & Jorge Navarro & Luis F. Zarzalejo & Carolina García Barquero & Ignacio Cruz, 2021. "Review of Data and Data Sources for the Assessment of the Potential of Utility-Scale Hybrid Wind–Solar PV Power Plants Deployment, under a Microgrid Scope," Energies, MDPI, vol. 14(21), pages 1-23, November.
    19. Bertermann, D. & Klug, H. & Morper-Busch, L., 2015. "A pan-European planning basis for estimating the very shallow geothermal energy potentials," Renewable Energy, Elsevier, vol. 75(C), pages 335-347.
    20. Ramírez-Faz, J. & López-Luque, R. & Casares, F.J., 2015. "Development of synthetic hemispheric projections suitable for assessing the sky view factor on vertical planes," Renewable Energy, Elsevier, vol. 74(C), pages 279-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:915-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.