Paper-based devices for energy applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2015.08.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jin-Cherng Shyu & Po-Yan Wang & Chien-Liang Lee & Sung-Chun Chang & Tsung-Sheng Sheu & Chun-Hsien Kuo & Kun-Lung Huang & Zi-Yi Yang, 2015. "Fabrication and Test of an Air-Breathing Microfluidic Fuel Cell," Energies, MDPI, vol. 8(3), pages 1-15, March.
- Paola Tiberto & Gabriele Barrera & Federica Celegato & Marco Coïsson & Alessandro Chiolerio & Paola Martino & Paolo Pandolfi & Paolo Allia, 2013. "Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(4), pages 1-6, April.
- Bozhi Tian & Xiaolin Zheng & Thomas J. Kempa & Ying Fang & Nanfang Yu & Guihua Yu & Jinlin Huang & Charles M. Lieber, 2007. "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature, Nature, vol. 449(7164), pages 885-889, October.
- Tatsuya Shimoda & Yasuo Matsuki & Masahiro Furusawa & Takashi Aoki & Ichio Yudasaka & Hideki Tanaka & Haruo Iwasawa & Daohai Wang & Masami Miyasaka & Yasumasa Takeuchi, 2006. "Solution-processed silicon films and transistors," Nature, Nature, vol. 440(7085), pages 783-786, April.
- Xi Liu & Leilei Gu & Qianpeng Zhang & Jiyuan Wu & Yunze Long & Zhiyong Fan, 2014. "All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
- Peng, Lihong & Zeng, Xiaoling & Wang, Yejun & Hong, Gui-Bing, 2015. "Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry," Energy Policy, Elsevier, vol. 80(C), pages 65-75.
- Li-Qiang Mai & Fan Yang & Yun-Long Zhao & Xu Xu & Lin Xu & Yan-Zhu Luo, 2011. "Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
- Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Wang, Huizhi, 2012. "Towards orientation-independent performance of membraneless microfluidic fuel cell: Understanding the gravity effects," Applied Energy, Elsevier, vol. 90(1), pages 80-86.
- Stephen R. Forrest, 2004. "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature, Nature, vol. 428(6986), pages 911-918, April.
- Sheng Xu & Yihui Zhang & Jiung Cho & Juhwan Lee & Xian Huang & Lin Jia & Jonathan A. Fan & Yewang Su & Jessica Su & Huigang Zhang & Huanyu Cheng & Bingwei Lu & Cunjiang Yu & Chi Chuang & Tae-il Kim & , 2013. "Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yifei & Kwok, Holly Y.H. & Pan, Wending & Zhang, Huimin & Lu, Xu & Leung, Dennis Y.C., 2019. "Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Rarotra, Saptak & Shahid, Shaik & De, Mahuya & Mandal, Tapas Kumar & Bandyopadhyay, Dipankar, 2021. "Graphite/RGO coated paper μ-electrolyzers for production and separation of hydrogen and oxygen," Energy, Elsevier, vol. 228(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).
- Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
- Ouyang, Tiancheng & Chen, Jingxian & Liu, Wenjun & Xu, Peihang & Lu, Jie & Zhao, Zhongkai, 2022. "A comprehensive evaluation for microfluidic fuel cells from anti-vibration viewpoint using phase field theory," Renewable Energy, Elsevier, vol. 189(C), pages 676-693.
- Sergey Korchagin & Ekaterina Pleshakova & Irina Alexandrova & Vitaliy Dolgov & Elena Dogadina & Denis Serdechnyy & Konstantin Bublikov, 2021. "Mathematical Modeling of Electrical Conductivity of Anisotropic Nanocomposite with Periodic Structure," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
- Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
- Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
- Wang, Yifei & Luo, Shijing & Kwok, Holly Y.H. & Pan, Wending & Zhang, Yingguang & Zhao, Xiaolong & Leung, Dennis Y.C., 2021. "Microfluidic fuel cells with different types of fuels: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
- Wang, Yifei & Leung, Dennis Y.C., 2016. "A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel," Applied Energy, Elsevier, vol. 184(C), pages 659-669.
- Cao, Weiran & Li, Zhifeng & Yang, Yixing & Zheng, Ying & Yu, Weijie & Afzal, Rimza & Xue, Jiangeng, 2014. "“Solar tree”: Exploring new form factors of organic solar cells," Renewable Energy, Elsevier, vol. 72(C), pages 134-139.
- Meng, Bo & Liu, Yu & Andrew, Robbie & Zhou, Meifang & Hubacek, Klaus & Xue, Jinjun & Peters, Glen & Gao, Yuning, 2018. "More than half of China’s CO2 emissions are from micro, small and medium-sized enterprises," Applied Energy, Elsevier, vol. 230(C), pages 712-725.
- Verma, Piyush & Patel, Nitish & Nair, Nirmal-Kumar C. & Brent, Alan C., 2018. "Improving the energy efficiency of the New Zealand economy: A policy comparison with other renewable-rich countries," Energy Policy, Elsevier, vol. 122(C), pages 506-517.
- Satu Kähkönen & Esa Vakkilainen & Timo Laukkanen, 2019. "Impact of Structural Changes on Energy Efficiency of Finnish Pulp and Paper Industry," Energies, MDPI, vol. 12(19), pages 1-12, September.
- Ulvi Rzazade & Sergey Deryabin & Igor Temkin & Egor Kondratev & Alexander Ivannikov, 2023. "On the Issue of the Creation and Functioning of Energy Efficiency Management Systems for Technological Processes of Mining Enterprises," Energies, MDPI, vol. 16(13), pages 1-21, June.
- C Karthikeyan & R Dhilip Kumar & J Anandha Raj & S Karuppuchamy, 2020. "One pot and large-scale synthesis of nanostructured metal sulfides: Synergistic effect on supercapacitor performance," Energy & Environment, , vol. 31(8), pages 1367-1384, December.
- Wang, Yutao & Yang, Xuechun & Sun, Mingxing & Ma, Lei & Li, Xiao & Shi, Lei, 2016. "Estimating carbon emissions from the pulp and paper industry: A case study," Applied Energy, Elsevier, vol. 184(C), pages 779-789.
- Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Chenhao Gao & Keyi Zhong & Xuan Fang & Dan Fang & Hongbin Zhao & Dengkui Wang & Bobo Li & Yingjiao Zhai & Xueying Chu & Jinhua Li & Xiaohua Wang, 2021. "Brief Review of Photocatalysis and Photoresponse Properties of ZnO–Graphene Nanocomposites," Energies, MDPI, vol. 14(19), pages 1-25, October.
- Wasiu Adebayo Hammed & Rosiyah Yahya & Abdulra'uf Lukman Bola & Habibun Nabi Muhammad Ekramul Mahmud, 2013. "Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells," Energies, MDPI, vol. 6(11), pages 1-22, November.
- Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
More about this item
Keywords
Paper-based energy devices; Energy storage and conversion; Lightweight materials; Degradable materials; Carbon nanotubes; Graphene;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1453-1472. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.