IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6986d10.1038_nature02498.html
   My bibliography  Save this article

The path to ubiquitous and low-cost organic electronic appliances on plastic

Author

Listed:
  • Stephen R. Forrest

    (Princeton University)

Abstract

Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

Suggested Citation

  • Stephen R. Forrest, 2004. "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature, Nature, vol. 428(6986), pages 911-918, April.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6986:d:10.1038_nature02498
    DOI: 10.1038/nature02498
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02498
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Guo & Chen Yang & Bin Huang, 2023. "Design of Flexible FeCoSiB/ZnO Thin-Film Multiferroic Module for Low-Frequency Energy Harvesting," Energies, MDPI, vol. 16(13), pages 1-19, June.
    2. Sharifi, Farrokh & Ghobadian, Sasan & Cavalcanti, Flavia R. & Hashemi, Nastaran, 2015. "Paper-based devices for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1453-1472.
    3. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    4. Peiliu Li & Xianfu Huang & Ya-Pu Zhao, 2023. "Electro-capillary peeling of thin films," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jaroslav Vrchota & Martin Pech & Ladislav Rolínek & Jiří Bednář, 2020. "Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review," Sustainability, MDPI, vol. 12(15), pages 1-47, July.
    6. Islam, Nazrul & Marinakis, Yorgos & Majadillas, Mary Anne & Fink, Matthias & Walsh, Steven T., 2020. "Here there be dragons, a pre-roadmap construct for IoT service infrastructure," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    7. Wasiu Adebayo Hammed & Rosiyah Yahya & Abdulra'uf Lukman Bola & Habibun Nabi Muhammad Ekramul Mahmud, 2013. "Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells," Energies, MDPI, vol. 6(11), pages 1-22, November.
    8. Maximilian Dreher & Pierre Martin Dombrowski & Matthias Wolfgang Tripp & Niels Münster & Ulrich Koert & Gregor Witte, 2023. "Shape control in 2D molecular nanosheets by tuning anisotropic intermolecular interactions and assembly kinetics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Cao, Weiran & Li, Zhifeng & Yang, Yixing & Zheng, Ying & Yu, Weijie & Afzal, Rimza & Xue, Jiangeng, 2014. "“Solar tree”: Exploring new form factors of organic solar cells," Renewable Energy, Elsevier, vol. 72(C), pages 134-139.
    10. Lizin, Sebastien & Leroy, Julie & Delvenne, Catherine & Dijk, Marc & De Schepper, Ellen & Van Passel, Steven, 2013. "A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase," Renewable Energy, Elsevier, vol. 57(C), pages 5-11.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6986:d:10.1038_nature02498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.