IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i3p2082-2096d46887.html
   My bibliography  Save this article

Fabrication and Test of an Air-Breathing Microfluidic Fuel Cell

Author

Listed:
  • Jin-Cherng Shyu

    (Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan)

  • Po-Yan Wang

    (Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan)

  • Chien-Liang Lee

    (Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan
    These authors contributed equally to this work.)

  • Sung-Chun Chang

    (Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
    These authors contributed equally to this work.)

  • Tsung-Sheng Sheu

    (Department of Mechanical Engineering, R.O.C. Military Academy, Kaohsiung 83059, Taiwan
    These authors contributed equally to this work.)

  • Chun-Hsien Kuo

    (Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan
    These authors contributed equally to this work.)

  • Kun-Lung Huang

    (Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan
    These authors contributed equally to this work.)

  • Zi-Yi Yang

    (Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan
    These authors contributed equally to this work.)

Abstract

An air-breathing direct formic acid microfluidic fuel cell, which had a self-made anode electrode of 10 mg/cm 2 Pd loading and 6 mg/cm 2 Nafion content, was fabricated and tested. The microfluidic fuel cell was achieved by bonding a PDMS microchannel that was fabricated by a soft-lithography process and a PMMA sheet that was machined by a CO 2 laser for obtaining 50 through holes of 0.5 mm in diameter. Formic acid of 0.3 M, 0.5 M, and 1.0 M, mixed with 0.5-M H 2 SO 4 , was supplied at a flow rate ranging from 0.1 to 0.7 mL/min as fuel. The maximum power density of the fuel cell fed with 0.5-M HCOOH was approximately 31, 32.16, and 31 mW/cm 2 at 0.5, 0.6, and 0.7 mL/min, respectively. The simultaneous recording of the flow in the microchannel and the current density of the fuel cell at 0.2 V, within a 100-s duration, showed that the period and amplitude of each unsteady current oscillation were associated with the bubble resident time and bubble dimension, respectively. The effect of bubble dimension included the longitudinal and transverse bubble dimension, and the distance between two in-line bubbles as well.

Suggested Citation

  • Jin-Cherng Shyu & Po-Yan Wang & Chien-Liang Lee & Sung-Chun Chang & Tsung-Sheng Sheu & Chun-Hsien Kuo & Kun-Lung Huang & Zi-Yi Yang, 2015. "Fabrication and Test of an Air-Breathing Microfluidic Fuel Cell," Energies, MDPI, vol. 8(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:2082-2096:d:46887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/3/2082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/3/2082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Wang, Huizhi, 2012. "Towards orientation-independent performance of membraneless microfluidic fuel cell: Understanding the gravity effects," Applied Energy, Elsevier, vol. 90(1), pages 80-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharifi, Farrokh & Ghobadian, Sasan & Cavalcanti, Flavia R. & Hashemi, Nastaran, 2015. "Paper-based devices for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1453-1472.
    2. Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
    3. Wang, Yifei & Luo, Shijing & Kwok, Holly Y.H. & Pan, Wending & Zhang, Yingguang & Zhao, Xiaolong & Leung, Dennis Y.C., 2021. "Microfluidic fuel cells with different types of fuels: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Ouyang, Tiancheng & Chen, Jingxian & Liu, Wenjun & Xu, Peihang & Lu, Jie & Zhao, Zhongkai, 2022. "A comprehensive evaluation for microfluidic fuel cells from anti-vibration viewpoint using phase field theory," Renewable Energy, Elsevier, vol. 189(C), pages 676-693.
    5. Jaime Hernández Rivera & David Ortega Díaz & Diana María Amaya Cruz & Juvenal Rodríguez-Reséndiz & Juan Manuel Olivares Ramírez & Andrés Dector & Diana Dector & Rosario Galindo & Hilda Esperanza Espar, 2020. "A Paper-Based Microfluidic Fuel Cell Using Soft Drinks as a Renewable Energy Source," Energies, MDPI, vol. 13(10), pages 1-13, May.
    6. Muhammad Tanveer & Kwang-Yong Kim, 2021. "Flow Configurations of Membraneless Microfluidic Fuel Cells: A Review," Energies, MDPI, vol. 14(12), pages 1-33, June.
    7. Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    2. Wang, Yifei & Leung, Dennis Y.C., 2016. "A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel," Applied Energy, Elsevier, vol. 184(C), pages 659-669.
    3. Liu, Shihua & Chen, Tao & Zhang, Cheng & Xie, Yi, 2020. "Study on the performance of proton exchange membrane fuel cell (PEMFC) with dead-ended anode in gravity environment," Applied Energy, Elsevier, vol. 261(C).
    4. Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
    5. Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    7. Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).
    8. Sharifi, Farrokh & Ghobadian, Sasan & Cavalcanti, Flavia R. & Hashemi, Nastaran, 2015. "Paper-based devices for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1453-1472.
    9. Ouyang, Tiancheng & Chen, Jingxian & Liu, Wenjun & Xu, Peihang & Lu, Jie & Zhao, Zhongkai, 2022. "A comprehensive evaluation for microfluidic fuel cells from anti-vibration viewpoint using phase field theory," Renewable Energy, Elsevier, vol. 189(C), pages 676-693.
    10. Liu, Shihua & Li, Xiaoyang & Pang, Linjia & Geng, Tie & Guo, Yonggang & Jiang, Lin & Kang, Kejia & Wang, Xinchao & Liu, Zongyao, 2022. "Study on the effect of purging time on the performance of PEMFC with dead-ended anode under gravity," Renewable Energy, Elsevier, vol. 200(C), pages 1141-1151.
    11. Zhang, Hao & Xuan, Jin & Xu, Hong & Leung, Michael K.H. & Leung, Dennis Y.C. & Zhang, Li & Wang, Huizhi & Wang, Lei, 2013. "Enabling high-concentrated fuel operation of fuel cells with microfluidic principles: A feasibility study," Applied Energy, Elsevier, vol. 112(C), pages 1131-1137.
    12. Xu, Hong & Zhang, Hao & Wang, Huizhi & Leung, Dennis Y.C. & Zhang, Li & Cao, Jun & Jiao, Kui & Xuan, Jin, 2015. "Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%," Applied Energy, Elsevier, vol. 160(C), pages 930-936.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:2082-2096:d:46887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.