IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp699-717.html
   My bibliography  Save this article

Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective

Author

Listed:
  • Arora, Richa
  • Behera, Shuvashish
  • Kumar, Sachin

Abstract

The progressive depletion of non-renewable energy sources worldwide, together with the fact that their overexploitation has resulted in environmental deterioration and public health problems, has led to consider alternative sources of energy. Lignocellulose-based bioethanol is a leading option among alternatives to petroleum-derived transportation fuels due to its potential sustainability. The production of ethanol through microbial fermentations has generated considerable research interests. Several thermophilic/thermotolerant ethanologenic species i.e. Clostridium thermocellum, C. thermohydrosulfuricum, C. thermosaccharolyticum, Caldicellulosiruptor sp., Thermotoga sp., Thermoanaerobium brockii, Thermoanaerobacter ethanolicus, T. thermo-hydrosulfuricus, T. mathranii, etc., have been isolated and identified as the potential lignocellulosic ethanol producers. Use of lignocellulolytic organisms alone at high temperatures could potentially reduce the cellulase requirement. Moreover, such cultures facilitate the ethanol production at high temperature and offer the possibility of in-situ ethanol recovery. However, more research on the metabolic pathways, regulation of end-product formation and construction of genetically engineered thermophilic/thermotolerant microorganisms with high tolerance to ethanol is required for optimal utilization of such microbes in industrial fermentations. Therefore, the present review has been focused on thermophilic/thermotolerant microbes for the production of ethanol, especially on their catabolic pathways, end-product formation and their future perspectives for industrial applications.

Suggested Citation

  • Arora, Richa & Behera, Shuvashish & Kumar, Sachin, 2015. "Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 699-717.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:699-717
    DOI: 10.1016/j.rser.2015.06.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211500622X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.06.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yu-Sheng & Lee, Wen-Chien & Duan, Kow-Jen & Lin, Yen-Han, 2013. "Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus," Applied Energy, Elsevier, vol. 105(C), pages 389-394.
    2. Littlewood, Jade & Murphy, Richard J. & Wang, Lei, 2013. "Importance of policy support and feedstock prices on economic feasibility of bioethanol production from wheat straw in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 291-300.
    3. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    4. Basavaraj, G. & Parthasarathy Rao, P. & Basu, Kaushik & Reddy, Ch Ravinder & Kumar, A. Ashok & Srinivasa Rao, P. & Reddy, B.V.S., 2013. "Assessing viability of bio-ethanol production from sweet sorghum in India," Energy Policy, Elsevier, vol. 56(C), pages 501-508.
    5. Kuhad, Ramesh Chander & Gupta, Rishi & Khasa, Yogender Pal & Singh, Ajay & Zhang, Y.-H. Percival, 2011. "Bioethanol production from pentose sugars: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4950-4962.
    6. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    7. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    8. Sigurbjornsdottir, Margret Audur & Orlygsson, Johann, 2012. "Combined hydrogen and ethanol production from sugars and lignocellulosic biomass by Thermoanaerobacterium AK54, isolated from hot spring," Applied Energy, Elsevier, vol. 97(C), pages 785-791.
    9. Kim, Seonghun & Kim, Chul Ho, 2013. "Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber," Renewable Energy, Elsevier, vol. 54(C), pages 150-155.
    10. Viola, E. & Zimbardi, F. & Valerio, V. & Nanna, F. & Battafarano, A., 2013. "Use of a two-chamber reactor to improve enzymatic hydrolysis and fermentation of lignocellulosic materials," Applied Energy, Elsevier, vol. 102(C), pages 198-203.
    11. Sorapipatana, Chumnong & Yoosin, Suthamma, 2011. "Life cycle cost of ethanol production from cassava in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1343-1349, February.
    12. Cha, Young-Lok & An, Gi Hong & Yang, Jungwoo & Moon, Youn-Ho & Yu, Gyeong-Dan & Ahn, Jong-Woong, 2015. "Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants," Renewable Energy, Elsevier, vol. 80(C), pages 259-265.
    13. Liu, Beibei & Wang, Feng & Zhang, Bing & Bi, Jun, 2013. "Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China," Energy Policy, Elsevier, vol. 56(C), pages 210-220.
    14. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    15. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & de Oliveira Júnior, Sérgio Dantas & de Araújo Padilha, Carlos Eduardo & de Sousa Junior, Francisco Caninde & de Macedo, 2018. "Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation," Renewable Energy, Elsevier, vol. 116(PA), pages 299-308.
    2. Kong, Jun & Liu, Hanyu & Zheng, Zhaolei, 2020. "Chemical Kinetics Study on Combustion of Ethanol/biodiesel/n-heptane," Renewable Energy, Elsevier, vol. 148(C), pages 150-167.
    3. González-Bautista, Enrique & Alarcón-Gutiérrez, Enrique & Dupuy, Nathalie & Gaime-Perraud, Isabelle & Ziarelli, Fabio & Foli, Lisa & Farnet-Da-Silva, Anne-Marie, 2020. "Preparation of a sugarcane bagasse-based substrate for second-generation ethanol: Effect of pasteurisation conditions on dephenolisation," Renewable Energy, Elsevier, vol. 157(C), pages 859-866.
    4. Bayrakci Ozdingis, Asiye Gul & Kocar, Gunnur, 2018. "Current and future aspects of bioethanol production and utilization in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2196-2203.
    5. Arora, Richa & Behera, Shuvashish & Sharma, Nilesh Kumar & Kumar, Sachin, 2017. "Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates," Renewable Energy, Elsevier, vol. 109(C), pages 406-421.
    6. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    7. Jahnavi, Gentela & Prashanthi, Govumoni Sai & Sravanthi, Koti & Rao, Linga Venkateswar, 2017. "Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 798-820.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arora, Richa & Behera, Shuvashish & Sharma, Nilesh Kumar & Kumar, Sachin, 2017. "Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates," Renewable Energy, Elsevier, vol. 109(C), pages 406-421.
    2. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    3. Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
    4. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    6. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    7. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    8. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    9. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    10. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    11. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Wen, Pei-Ling & Lin, Jin-Xu & Lin, Shih-Mo & Feng, Chun-Chiang & Ko, Fu-Kuang, 2015. "Optimal production of cellulosic ethanol from Taiwan's agricultural waste," Energy, Elsevier, vol. 89(C), pages 294-304.
    13. Suhartini, Sri & Rohma, Novita Ainur & Mardawati, Efri & Kasbawati, & Hidayat, Nur & Melville, Lynsey, 2022. "Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    16. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    17. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    18. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    19. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    20. Soares, Juliana Ferreira & Confortin, Tássia Carla & Todero, Izelmar & Mayer, Flávio Dias & Mazutti, Marcio Antonio, 2020. "Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:699-717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.