IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v42y2015icp429-445.html
   My bibliography  Save this article

Energy efficiency and renewable energy integration in data centres. Strategies and modelling review

Author

Listed:
  • Oró, Eduard
  • Depoorter, Victor
  • Garcia, Albert
  • Salom, Jaume

Abstract

The continuous growth in size, complexity and energy density of data centres due to the increasing demand for storage, networking and computation has become a worldwide energetic problem. The emergent awareness of the negative impact that the uncontrolled energy consumption has on natural environment, the predicted limitation of fossil fuels production in the upcoming decades and the growing associated costs have strongly influenced the energy systems engineering work in the last decades. Therefore, the implementation of well known and advanced energy efficiency measures to reduce data centres energy demand play an important role not only to a supportable growth but also to reduce its operational costs. The carbon footprint is greatly influenced by the energy sources used. Therefore, there have been recent efforts to exploit and reuse or combine green energy sources in data centres to lower brown energy consumption and CO2 emissions. This paper presents a comprehensible overview of the current data centre infrastructure and summarizes a number of currently available energy efficiency strategies and renewable energy integration into data centres and its characterization using numerical models. Moreover it would be necessary to develop dynamic models and metrics for properly understand and quantify the energy consumption and the benefits of applying the incoming energy efficiency strategies and renewable energy sources in the data centres. Thus, the researches or investors will be able to compare with reliability the different data centre designs and choose the best option depending on the renewable energy sources and capital available.

Suggested Citation

  • Oró, Eduard & Depoorter, Victor & Garcia, Albert & Salom, Jaume, 2015. "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 429-445.
  • Handle: RePEc:eee:rensus:v:42:y:2015:i:c:p:429-445
    DOI: 10.1016/j.rser.2014.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114008600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guizzi, Giuseppe Leo & Manno, Michele, 2012. "Fuel cell-based cogeneration system covering data centers’ energy needs," Energy, Elsevier, vol. 41(1), pages 56-64.
    2. Dai, Jun & Das, Diganta & Ohadi, Michael & Pecht, Michael, 2013. "Reliability risk mitigation of free air cooling through prognostics and health management," Applied Energy, Elsevier, vol. 111(C), pages 104-112.
    3. Uddin, Mueen & Rahman, Azizah Abdul, 2012. "Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4078-4094.
    4. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    5. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tian, Changqing, 2014. "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 171-182.
    6. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    7. Marcinichen, Jackson Braz & Wu, Duan & Paredes, Stephan & Thome, John R. & Michel, Bruno, 2014. "Dynamic flow control and performance comparison of different concepts of two-phase on-chip cooling cycles," Applied Energy, Elsevier, vol. 114(C), pages 179-191.
    8. Domenico Borello & Alessandro Corsini & Franco Rispoli & Eileen Tortora, 2013. "A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation," Energies, MDPI, vol. 6(3), pages 1-19, March.
    9. Zimmermann, Severin & Meijer, Ingmar & Tiwari, Manish K. & Paredes, Stephan & Michel, Bruno & Poulikakos, Dimos, 2012. "Aquasar: A hot water cooled data center with direct energy reuse," Energy, Elsevier, vol. 43(1), pages 237-245.
    10. Quesada, B. & Sánchez, C. & Cañada, J. & Royo, R. & Payá, J., 2011. "Experimental results and simulation with TRNSYS of a 7.2Â kWp grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 88(5), pages 1772-1783, May.
    11. Dai, Jun & Das, Diganta & Pecht, Michael, 2012. "Prognostics-based risk mitigation for telecom equipment under free air cooling conditions," Applied Energy, Elsevier, vol. 99(C), pages 423-429.
    12. Nejat, Payam & Morsoni, Abdul Kasir & Jomehzadeh, Fatemeh & Behzad, Hamid & Saeed Vesali, Mohamad & Majid, M.Z.Abd., 2013. "Iran's achievements in renewable energy during fourth development program in comparison with global trend," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 561-570.
    13. Siriwardana, Jayantha & Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Potential of air-side economizers for data center cooling: A case study for key Australian cities," Applied Energy, Elsevier, vol. 104(C), pages 207-219.
    14. Mueen Uddin & Azizah Abdul Rahman & Asadullah Shah, 2012. "Criteria to select energy efficiency metrics to measure performance of data centre," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 8(3/4/5/6), pages 224-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    2. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    3. Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
    4. Di Salvo, André L.A. & Agostinho, Feni & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2017. "Can cloud computing be labeled as “green”? Insights under an environmental accounting perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 514-526.
    5. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    6. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    7. Wansheng Yang & Lin Yang & Junjie Ou & Zhongqi Lin & Xudong Zhao, 2019. "Investigation of Heat Management in High Thermal Density Communication Cabinet by a Rear Door Liquid Cooling System," Energies, MDPI, vol. 12(22), pages 1-25, November.
    8. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    9. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    10. Shuja, Junaid & Gani, Abdullah & Shamshirband, Shahaboddin & Ahmad, Raja Wasim & Bilal, Kashif, 2016. "Sustainable Cloud Data Centers: A survey of enabling techniques and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 195-214.
    11. Uddin, Mueen & Darabidarabkhani, Yasaman & Shah, Asadullah & Memon, Jamshed, 2015. "Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1553-1563.
    12. Fulpagare, Yogesh & Bhargav, Atul, 2015. "Advances in data center thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 981-996.
    13. Matteo Manganelli & Alessandro Soldati & Luigi Martirano & Seeram Ramakrishna, 2021. "Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    14. Depoorter, Victor & Oró, Eduard & Salom, Jaume, 2015. "The location as an energy efficiency and renewable energy supply measure for data centres in Europe," Applied Energy, Elsevier, vol. 140(C), pages 338-349.
    15. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tian, Changqing, 2014. "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 171-182.
    16. Bao, Yuchen & Zhou, Haojie & Li, Ji, 2024. "Physics-based machine learning optimization of thermoelectric assembly for maximizing waste heat recovery," Energy, Elsevier, vol. 307(C).
    17. Silva-Llanca, Luis & Ortega, Alfonso & Fouladi, Kamran & del Valle, Marcelo & Sundaralingam, Vikneshan, 2018. "Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the Exergy Destruction," Applied Energy, Elsevier, vol. 213(C), pages 235-246.
    18. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    19. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    20. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:42:y:2015:i:c:p:429-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.