IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v10y2006i6p503-538.html
   My bibliography  Save this article

Integrated collector storage solar water heaters

Author

Listed:
  • Smyth, M.
  • Eames, P.C.
  • Norton, B.

Abstract

The Integrated Collector Storage Solar Water Heater (ICSSWH) developed from early systems comprised simply of a simple black tank placed in the sun. The ICSSWH, by its combined collection and storage function suffers substantial heat losses to ambient, especially at night-time and non-collection periods. To be viable economically, the system has evolved to incorporate new and novel methods of maximising solar radiation collection whilst minimising thermal loss. Advances in ICS vessel design have included glazing system, methods of insulation, reflector configurations, use of evacuation, internal and external baffles and phase change materials.

Suggested Citation

  • Smyth, M. & Eames, P.C. & Norton, B., 2006. "Integrated collector storage solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 503-538, December.
  • Handle: RePEc:eee:rensus:v:10:y:2006:i:6:p:503-538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(04)00142-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "ICS solar systems with horizontal (E–W) and vertical (N–S) cylindrical water storage tank," Renewable Energy, Elsevier, vol. 29(1), pages 73-96.
    2. Kalogirou, Soteris A., 1999. "Performance enhancement of an integrated collector storage hot water system," Renewable Energy, Elsevier, vol. 16(1), pages 652-655.
    3. Kalogirou, Soteris, 1997. "Design, construction, performance evaluation and economic analysis of an integrated collector storage system," Renewable Energy, Elsevier, vol. 12(2), pages 179-192.
    4. Tripanagnostopoulos, Y. & Souliotis, M. & Nousia, Th., 1999. "Solar ICS systems with two cylindrical storage tanks," Renewable Energy, Elsevier, vol. 16(1), pages 665-668.
    5. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "Integrated collector storage solar systems with asymmetric CPC reflectors," Renewable Energy, Elsevier, vol. 29(2), pages 223-248.
    6. Smyth, M. & Eames, P. C. & Norton, B., 2001. "Evaluation of a freeze resistant integrated collector/storage solar water-heater for northern Europe," Applied Energy, Elsevier, vol. 68(3), pages 265-274, March.
    7. de Beijer, H.A., 1998. "Product development in solar water heating," Renewable Energy, Elsevier, vol. 15(1), pages 201-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    2. Devanarayanan, K. & Kalidasa Murugavel, K., 2014. "Integrated collector storage solar water heater with compound parabolic concentrator – development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 51-64.
    3. Souliotis, M. & Kalogirou, S. & Tripanagnostopoulos, Y., 2009. "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS," Renewable Energy, Elsevier, vol. 34(5), pages 1333-1339.
    4. Tripanagnostopoulos, Y. & Souliotis, M., 2006. "ICS solar systems with two water tanks," Renewable Energy, Elsevier, vol. 31(11), pages 1698-1717.
    5. Souliotis, M. & Tripanagnostopoulos, Y., 2008. "Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater," Renewable Energy, Elsevier, vol. 33(5), pages 846-858.
    6. Barone, G. & Buonomano, A. & Palmieri, V. & Palombo, A., 2022. "A prototypal high-vacuum integrated collector storage solar water heater: Experimentation, design, and optimization through a new in-house 3D dynamic simulation model," Energy, Elsevier, vol. 238(PC).
    7. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    8. Souliotis, Manolis & Papaefthimiou, Spiros & Caouris, Yiannis G. & Zacharopoulos, Aggelos & Quinlan, Patrick & Smyth, Mervyn, 2017. "Integrated collector storage solar water heater under partial vacuum," Energy, Elsevier, vol. 139(C), pages 991-1002.
    9. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    10. Smyth, Mervyn & Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Mondol, Jayanta & Muhumuza, Ronald & Pugsley, Adrian & Zacharopoulos, Aggelos, 2020. "Modelling and experimental evaluation of an innovative Integrated Collector Storage Solar Water Heating (ICSSWH) prototype," Renewable Energy, Elsevier, vol. 157(C), pages 974-986.
    11. Harmim, A. & Boukar, M. & Amar, M. & Haida, Aek, 2019. "Simulation and experimentation of an integrated collector storage solar water heater designed for integration into building facade," Energy, Elsevier, vol. 166(C), pages 59-71.
    12. Yassen, Tadahmun A. & Mokhlif, Nassir D. & Eleiwi, Muhammad Asmail, 2019. "Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use," Renewable Energy, Elsevier, vol. 138(C), pages 852-860.
    13. Carboni, Christian & Montanari, Roberto, 2008. "Solar thermal systems: Advantages in domestic integration," Renewable Energy, Elsevier, vol. 33(6), pages 1364-1373.
    14. Nektarios Arnaoutakis & Andreas P. Vouros & Maria Milousi & Yannis G. Caouris & Giorgos Panaras & Antonios Tourlidakis & Kyriakos Vafiadis & Giouli Mihalakakou & Christos S. Garoufalis & Zacharias Fro, 2022. "Design, Energy, Environmental and Cost Analysis of an Integrated Collector Storage Solar Water Heater Based on Multi-Criteria Methodology," Energies, MDPI, vol. 15(5), pages 1-21, February.
    15. Souliotis, M. & Chemisana, D. & Caouris, Y.G. & Tripanagnostopoulos, Y., 2013. "Experimental study of integrated collector storage solar water heaters," Renewable Energy, Elsevier, vol. 50(C), pages 1083-1094.
    16. Lyu, Yuan-Li & Chow, Tin-Tai & Wang, Jin-Liang, 2018. "Numerical prediction of thermal performance of liquid-flow window in different climates with anti-freeze," Energy, Elsevier, vol. 157(C), pages 412-423.
    17. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    18. Srinivas, Morapakala, 2011. "Domestic solar hot water systems: Developments, evaluations and essentials for “viability” with a special reference to India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3850-3861.
    19. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    20. Kalogirou, Soteris A., 1999. "Performance enhancement of an integrated collector storage hot water system," Renewable Energy, Elsevier, vol. 16(1), pages 652-655.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:10:y:2006:i:6:p:503-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.