IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v39y2014icp1143-1154.html
   My bibliography  Save this article

Quantizing the deterministic nonlinearity in wind speed time series

Author

Listed:
  • Samet, Haidar
  • Marzbani, Fatemeh

Abstract

Linear models are capable of capturing the Linear Deterministic (LD) component of the time series. In order to benefit from both Nonlinear Deterministic (ND) and LD components during the prediction procedure, it is necessary to employ nonlinear models. The complexity of the prediction algorithm increases when nonlinear models are utilized. Hence, before applying nonlinear models the presence of nonlinear component should be confirmed. Although surrogate data technique uses various tests to indicate the nonlinearity, in many cases its test results are different and in conflict with each other. The reason is time series include LD and ND components together and giving a strict answer about nonlinearity cannot be applicable. Here instead of such a strict answer, by quantizing the ND component, a new index (a number between 0 and 1) is proposed (the closer to 1 the more ND components). In this method first we use ARMA models. The residual series is used to calculate the proposed index which it contains all components of the original series except LD. The proposed procedure is applied to three different case studies. Furthermore, the performance of some nonlinear prediction methods (Markov, Grey, Grey–Markov, EMD–Grey, NARnet and ARMAX) is compared with the proposed index.

Suggested Citation

  • Samet, Haidar & Marzbani, Fatemeh, 2014. "Quantizing the deterministic nonlinearity in wind speed time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1143-1154.
  • Handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:1143-1154
    DOI: 10.1016/j.rser.2014.07.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114005826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    2. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
    3. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    4. Oner, Yasemin & Ozcira, Selin & Bekiroglu, Nur & Senol, Ibrahim, 2013. "A comparative analysis of wind power density prediction methods for Çanakkale, Intepe region, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 491-502.
    5. Yan, Jie & Liu, Yongqian & Han, Shuang & Qiu, Meng, 2013. "Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 613-621.
    6. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    7. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    8. Kusiak, Andrew & Li, Wenyan, 2010. "Short-term prediction of wind power with a clustering approach," Renewable Energy, Elsevier, vol. 35(10), pages 2362-2369.
    9. Costa, Alexandre & Crespo, Antonio & Navarro, Jorge & Lizcano, Gil & Madsen, Henrik & Feitosa, Everaldo, 2008. "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1725-1744, August.
    10. Haque, Ashraf U. & Mandal, Paras & Kaye, Mary E. & Meng, Julian & Chang, Liuchen & Senjyu, Tomonobu, 2012. "A new strategy for predicting short-term wind speed using soft computing models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4563-4573.
    11. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahebi, Ali & Samet, Haidar & Ghanbari, Teymoor, 2017. "Evaluation of power transformer inrush currents and internal faults discrimination methods in presence of fault current limiter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 102-112.
    2. Shao, Zhen & Gao, Fei & Yang, Shan-Lin & Yu, Ben-gong, 2015. "A new semiparametric and EEMD based framework for mid-term electricity demand forecasting in China: Hidden characteristic extraction and probability density prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 876-889.
    3. Hugo Tavares Vieira Gouveia & Ronaldo Ribeiro Barbosa De Aquino & Aida Araújo Ferreira, 2018. "Enhancing Short-Term Wind Power Forecasting through Multiresolution Analysis and Echo State Networks," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Tsai, Sang-Bing & Yu, Jian & Ma, Li & Luo, Feng & Zhou, Jie & Chen, Quan & Xu, Lei, 2018. "A study on solving the production process problems of the photovoltaic cell industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3546-3553.
    5. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    6. Tsai, Sang-Bing, 2018. "Using the DEMATEL model to explore the job satisfaction of research and development professionals in china's photovoltaic cell industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 62-68.
    7. Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
    8. Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    9. Samet, Haidar, 2016. "Evaluation of digital metering methods used in protection and reactive power compensation of micro-grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 260-279.
    10. Liu, Hui & Duan, Zhu, 2020. "A vanishing moment ensemble model for wind speed multi-step prediction with multi-objective base model selection," Applied Energy, Elsevier, vol. 261(C).
    11. Tsai, Sang-Bing & Xue, Youzhi & Zhang, Jianyu & Chen, Quan & Liu, Yubin & Zhou, Jie & Dong, Weiwei, 2017. "Models for forecasting growth trends in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1169-1178.
    12. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    2. Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.
    3. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    4. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    7. Li, Gong & Shi, Jing & Zhou, Junyi, 2011. "Bayesian adaptive combination of short-term wind speed forecasts from neural network models," Renewable Energy, Elsevier, vol. 36(1), pages 352-359.
    8. Erdong Zhao & Jing Zhao & Liwei Liu & Zhongyue Su & Ning An, 2015. "Hybrid Wind Speed Prediction Based on a Self-Adaptive ARIMAX Model with an Exogenous WRF Simulation," Energies, MDPI, vol. 9(1), pages 1-20, December.
    9. Sun, Fei & Jin, Tongdan, 2022. "A hybrid approach to multi-step, short-term wind speed forecasting using correlated features," Renewable Energy, Elsevier, vol. 186(C), pages 742-754.
    10. Ramasamy, P. & Chandel, S.S. & Yadav, Amit Kumar, 2015. "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Elsevier, vol. 80(C), pages 338-347.
    11. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
    12. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    13. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    14. Hu, Jianming & Wang, Jianzhou & Xiao, Liqun, 2017. "A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts," Renewable Energy, Elsevier, vol. 114(PB), pages 670-685.
    15. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    16. Hu, Jianming & Wang, Jianzhou & Ma, Kailiang, 2015. "A hybrid technique for short-term wind speed prediction," Energy, Elsevier, vol. 81(C), pages 563-574.
    17. Naik, Jyotirmayee & Dash, Sujit & Dash, P.K. & Bisoi, Ranjeeta, 2018. "Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neural network," Renewable Energy, Elsevier, vol. 118(C), pages 180-212.
    18. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    19. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    20. Feijóo, Andrés & Villanueva, Daniel, 2016. "Assessing wind speed simulation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 473-483.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:1143-1154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.