IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i9p749-d78217.html
   My bibliography  Save this article

Characterization and Monitoring of a Self-Constructible Photovoltaic-Based Refrigerator

Author

Listed:
  • Claudio Del Pero

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Milan 20133, Italy)

  • Federico M. Butera

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Milan 20133, Italy)

  • Luigi Piegari

    (Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy)

  • Marco Faifer

    (Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy)

  • Maddalena Buffoli

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Milan 20133, Italy)

  • Paolo Monzani

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Milan 20133, Italy)

Abstract

At present, in the developing countries, the power grids do not reach every small town and, even when they do, they are not reliable. For this reason, preservation of food and medicines is a sensitive issue for a large number of people. This work introduces the characterization of a new, self-constructible refrigerator, powered by photovoltaic (PV) energy, suitable for the preservation of food in rural villages, with a specific focus on Africa’s tropical-equatorial belt. A thermally-insulated envelope, equipped with thermal energy storage, has been designed to be built on-site, by using local materials, and assembled with technical components (direct current (DC) compressor, heat exchangers, photovoltaic module). The monitoring activity presented in this work was carried out on a first prototype of the system and enabled the validation of numerical simulations, aimed at assessing its appropriate operability under laboratory conditions. In particular, the work demonstrates that the basic module of the refrigerator, with a net capacity of 250 L and an ice storage of 12.5 kg, is able to maintain an internal temperature below 10 °C also in critical boundary conditions.

Suggested Citation

  • Claudio Del Pero & Federico M. Butera & Luigi Piegari & Marco Faifer & Maddalena Buffoli & Paolo Monzani, 2016. "Characterization and Monitoring of a Self-Constructible Photovoltaic-Based Refrigerator," Energies, MDPI, vol. 9(9), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:749-:d:78217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/9/749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/9/749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    2. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    3. Aste, N. & Tagliabue, L.C. & Del Pero, C. & Testa, D. & Fusco, R., 2015. "Performance analysis of a large-area luminescent solar concentrator module," Renewable Energy, Elsevier, vol. 76(C), pages 330-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    2. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    3. Seel, Joachim & Barbose, Galen L. & Wiser, Ryan H., 2014. "An analysis of residential PV system price differences between the United States and Germany," Energy Policy, Elsevier, vol. 69(C), pages 216-226.
    4. Kiriyama, Eriko & Kajikawa, Yuya & Fujita, Katsuhide & Iwata, Shuichi, 2013. "A lead for transvaluation of global nuclear energy research and funded projects in Japan," Applied Energy, Elsevier, vol. 109(C), pages 145-153.
    5. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    6. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    7. Johannes Urpelainen, 2014. "Sinking costs to increase participation: technology deployment agreements enhance climate cooperation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(3), pages 229-240, July.
    8. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    9. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    10. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    11. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    12. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    13. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    14. Elizabeth Baldwin, Yongyang Cai, Karlygash Kuralbayeva, 2018. "To build or not to build? Capital stocks and climate policy," GRI Working Papers 290, Grantham Research Institute on Climate Change and the Environment.
    15. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    16. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    17. Grau, Thilo & Huo, Molin & Neuhoff, Karsten, 2012. "Survey of photovoltaic industry and policy in Germany and China," Energy Policy, Elsevier, vol. 51(C), pages 20-37.
    18. Pillai, Unni & McLaughlin, Jamison, 2013. "A model of competition in the solar panel industry," Energy Economics, Elsevier, vol. 40(C), pages 32-39.
    19. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
    20. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    21. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:749-:d:78217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.