IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v22y2013icp580-597.html
   My bibliography  Save this article

Characteristics of vegetable oils for use as fuel in stationary diesel engines—Towards specifications for a standard in West Africa

Author

Listed:
  • Blin, J.
  • Brunschwig, C.
  • Chapuis, A.
  • Changotade, O.
  • Sidibe, S.S.
  • Noumi, E.S.
  • Girard, P.

Abstract

West African countries are increasingly interested in producing straight vegetable oil (SVO) for direct use as fuel in diesel engines for stationary applications in the fields of agriculture, power generation and industry. Straight vegetable oil fuel quality, i.e impurities content and physico-chemical properties, is a recurring issue that seriously impedes the development of the sector. However, there is still no standard defining the quality characteristics of vegetable oils for fuel purposes in stationary engines. The aim of this study was to propose a quality standard with a set of specifications (parameters, test method, limit value), which SVOs must comply with in order to be used as fuel in stationary diesel engines without causing breakdowns or serious lifetime reductions. After a brief review of SVO production and use techniques, we present a critical review of existing fuel standards (fossil fuels, biodiesel and European SVO) that must be adapted to the use of SVO for stationary engines, with regard to the requirements of engine manufacturers. Based on this critical analysis and current knowledge of vegetable oil characterisation, we propose a simplified, inexpensive and efficient basic standard of seven specifications. This standard enables easy assessment of SVO quality for fuelling a stationary diesel engine.

Suggested Citation

  • Blin, J. & Brunschwig, C. & Chapuis, A. & Changotade, O. & Sidibe, S.S. & Noumi, E.S. & Girard, P., 2013. "Characteristics of vegetable oils for use as fuel in stationary diesel engines—Towards specifications for a standard in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 580-597.
  • Handle: RePEc:eee:rensus:v:22:y:2013:i:c:p:580-597
    DOI: 10.1016/j.rser.2013.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113001196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santori, Giulio & Di Nicola, Giovanni & Moglie, Matteo & Polonara, Fabio, 2012. "A review analyzing the industrial biodiesel production practice starting from vegetable oil refining," Applied Energy, Elsevier, vol. 92(C), pages 109-132.
    2. Bari, S. & Lim, T.H. & Yu, C.W., 2002. "Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine," Renewable Energy, Elsevier, vol. 27(3), pages 339-351.
    3. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    4. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    5. Ramadhas, A.S & Jayaraj, S & Muraleedharan, C, 2004. "Use of vegetable oils as I.C. engine fuels—A review," Renewable Energy, Elsevier, vol. 29(5), pages 727-742.
    6. Hanff, Elodie & Dabat, Marie-Hélène & Blin, Joël, 2011. "Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2199-2209, June.
    7. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    8. Hazar, Hanbey & Aydin, Hüseyin, 2010. "Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends," Applied Energy, Elsevier, vol. 87(3), pages 786-790, March.
    9. Marie Hélène Dabat & Elodie Hanff & Joël Blin, 2011. "Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations ?," Post-Print hal-03062104, HAL.
    10. Sidibé, S.S. & Blin, J. & Vaitilingom, G. & Azoumah, Y., 2010. "Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2748-2759, December.
    11. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    12. Agarwal, Avinash Kumar & Rajamanoharan, K., 2009. "Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine," Applied Energy, Elsevier, vol. 86(1), pages 106-112, January.
    13. Misra, R.D. & Murthy, M.S., 2011. "Jatropa--The future fuel of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1350-1359, February.
    14. Misra, R.D. & Murthy, M.S., 2010. "Straight vegetable oils usage in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3005-3013, December.
    15. Tatsidjodoung, Parfait & Dabat, Marie-Hélène & Blin, Joël, 2012. "Insights into biofuel development in Burkina Faso: Potential and strategies for sustainable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5319-5330.
    16. Jain, Siddharth & Sharma, M.P., 2010. "Prospects of biodiesel from Jatropha in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 763-771, February.
    17. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    18. Azoumah, Y. & Blin, J. & Daho, T., 2009. "Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels," Renewable Energy, Elsevier, vol. 34(6), pages 1494-1500.
    19. Lapuerta, Magín & Rodríguez-Fernández, José & de Mora, Emilio Font, 2009. "Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number," Energy Policy, Elsevier, vol. 37(11), pages 4337-4344, November.
    20. Agarwal, Avinash Kumar & Dhar, Atul, 2013. "Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine," Renewable Energy, Elsevier, vol. 52(C), pages 283-291.
    21. How, H.G. & Teoh, Y.H. & Masjuki, H.H. & Kalam, M.A., 2012. "Impact of coconut oil blends on particulate-phase PAHs and regulated emissions from a light duty diesel engine," Energy, Elsevier, vol. 48(1), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najjar, Yousef S.H., 2013. "Protection of the environment by using innovative greening technologies in land transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 480-491.
    2. Hasan AYDOGAN & A. Engin OZCELIK & Mustafa ACAROGLU, 2016. "Performance and Combustion Characteristics of a Diesel Engine Fuelled by Camelina Sativa Biodiesel-Diesel Fuel," Proceedings of International Academic Conferences 4006484, International Institute of Social and Economic Sciences.
    3. Fazal Um Min Allah, 2015. "Financial Analysis Of Using Jatropha Oil As Fuel In Diesel Engines," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 0, pages 201-206, July.
    4. No, Soo-Young, 2017. "Application of straight vegetable oil from triglyceride based biomass to IC engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 80-97.
    5. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    6. Nina Bruun & Fiseha Tesfaye & Jarl Hemming & Meheretu Jaleta Dirbeba & Leena Hupa, 2020. "Effect of Storage Time on the Physicochemical Properties of Waste Fish Oils and Used Cooking Vegetable Oils," Energies, MDPI, vol. 14(1), pages 1-14, December.
    7. Carolin Nuortila & Riikka Help & Katriina Sirviö & Helena Suopanki & Sonja Heikkilä & Seppo Niemi, 2020. "Selected Fuel Properties of Alcohol and Rapeseed Oil Blends," Energies, MDPI, vol. 13(15), pages 1-11, July.
    8. Raslavičius, Laurencas & Striūgas, Nerijus & Felneris, Mantas, 2018. "New insights into algae factories of the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 643-654.
    9. Francielle Carvalho & Joana Portugal-Pereira & Martin Junginger & Alexandre Szklo, 2021. "Biofuels for Maritime Transportation: A Spatial, Techno-Economic, and Logistic Analysis in Brazil, Europe, South Africa, and the USA," Energies, MDPI, vol. 14(16), pages 1-27, August.
    10. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Linda Dominique Fabiola Bambara & Marie Sawadogo & Daniel Roy & Didier Anciaux & Joël Blin & Salifou Koucka Ouiminga, 2018. "Biofuel from Balanites aegyptiaca : Optimization of the Feedstock Supply Chain," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    12. Jindapon, Wayu & Ruengyoo, Supapan & Kuchonthara, Prapan & Ngamcharussrivichai, Chawalit & Vitidsant, Tharapong, 2020. "Continuous production of fatty acid methyl esters and high-purity glycerol over a dolomite-derived extrudate catalyst in a countercurrent-flow trickle-bed reactor," Renewable Energy, Elsevier, vol. 157(C), pages 626-636.
    13. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    14. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    15. Arkadiusz Jamrozik & Wojciech Tutak & Karol Grab-Rogaliński, 2021. "Combustion Stability, Performance and Emission Characteristics of a CI Engine Fueled with Diesel/n-Butanol Blends," Energies, MDPI, vol. 14(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    3. No, Soo-Young, 2017. "Application of straight vegetable oil from triglyceride based biomass to IC engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 80-97.
    4. Litvine, Dorian & Gazull, Laurent & Dabat, Marie-Hélène, 2014. "Assessing the potential demand for biofuel by combining Economics and Psychology: A focus on proximity applied to Jatropha oil in Africa," Ecological Economics, Elsevier, vol. 100(C), pages 85-95.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    6. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    7. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    8. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    9. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    11. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    13. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    14. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    15. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    16. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    17. Shah, Pinkesh R. & Gaitonde, U.N. & Ganesh, Anuradda, 2018. "Influence of soy-lecithin as bio-additive with straight vegetable oil on CI engine characteristics," Renewable Energy, Elsevier, vol. 115(C), pages 685-696.
    18. Qi, D.H. & Bae, C. & Feng, Y.M. & Jia, C.C. & Bian, Y.Z., 2013. "Preparation, characterization, engine combustion and emission characteristics of rapeseed oil based hybrid fuels," Renewable Energy, Elsevier, vol. 60(C), pages 98-106.
    19. Capuano, D. & Costa, M. & Di Fraia, S. & Massarotti, N. & Vanoli, L., 2017. "Direct use of waste vegetable oil in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 759-770.
    20. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:22:y:2013:i:c:p:580-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.