IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v149y2018icp792-803.html
   My bibliography  Save this article

Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags

Author

Listed:
  • Sun, Yongqi
  • Seetharaman, Seshadri
  • Zhang, Zuotai

Abstract

The present study characterized a novel route, biomass pyrolysis using the waste heat in high temperature slags via extending the C-loops in the agricultural sector and metallurgy. The equilibrium yields of valuable syngas and biochar were clarified systemically here, in addition to the polluting gases. The results proved that compared to steel slags (SS), blast furnace slags (BFS) only had a limited influence at low temperatures (<700 °C). With respect to SS, there was a transition temperature range in which their roles varied remarkably, i.e., an increase of iron oxide content in SS continuously enhanced the CO yield over 700 °C, whereas a varying basicity mainly affected the pyrolysis results below 700 °C. Regarding the polluting gases, the overall effect of hot slags was quite limited, indicating that no great environmental impacts would be brought in this combined system.

Suggested Citation

  • Sun, Yongqi & Seetharaman, Seshadri & Zhang, Zuotai, 2018. "Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags," Energy, Elsevier, vol. 149(C), pages 792-803.
  • Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:792-803
    DOI: 10.1016/j.energy.2018.02.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2015. "Heat Recovery from High Temperature Slags: A Review of Chemical Methods," Energies, MDPI, vol. 8(3), pages 1-19, March.
    2. Sun, Wenqiang & Zhang, Fengyuan, 2016. "Design and thermodynamic analysis of a flash power system driven by process heat of continuous casting grade steel billet," Energy, Elsevier, vol. 116(P1), pages 94-101.
    3. Jo, Hoyong & Lee, Min-Gu & Park, Jinwon & Jung, Kwang-Deog, 2017. "Preparation of high-purity nano-CaCO3 from steel slag," Energy, Elsevier, vol. 120(C), pages 884-894.
    4. Dal Magro, Fabio & Savino, Stefano & Meneghetti, Antonella & Nardin, Gioacchino, 2017. "Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry," Energy, Elsevier, vol. 137(C), pages 1107-1118.
    5. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    6. Luo, Siyi & Feng, Yu, 2016. "The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag," Energy, Elsevier, vol. 113(C), pages 845-851.
    7. Duan, Wenjun & Yu, Qingbo & Xie, Huaqing & Qin, Qin, 2017. "Pyrolysis of coal by solid heat carrier-experimental study and kinetic modeling," Energy, Elsevier, vol. 135(C), pages 317-326.
    8. Li, Yemao & Xia, Jianjun & Fang, Hao & Su, Yingbo & Jiang, Yi, 2016. "Case study on industrial surplus heat of steel plants for district heating in Northern China," Energy, Elsevier, vol. 102(C), pages 397-405.
    9. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    10. Luo, Siyi & Fu, Jie & Zhou, Yangmin & Yi, Chuijie, 2017. "The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag," Renewable Energy, Elsevier, vol. 101(C), pages 1030-1036.
    11. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    12. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    13. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    14. Kirubakaran, V. & Sivaramakrishnan, V. & Nalini, R. & Sekar, T. & Premalatha, M. & Subramanian, P., 2009. "A review on gasification of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 179-186, January.
    15. Chen, Lingen & Shen, Xun & Xia, Shaojun & Sun, Fengrui, 2017. "Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas (BOG) by the methane reforming with carbon dioxide reaction," Energy, Elsevier, vol. 118(C), pages 906-913.
    16. Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Wenjun & Gao, Yunke & Yu, Qingbo & Wu, Tianwei & Wang, Zhimei, 2019. "Numerical simulation of coal gasification in molten slag: Gas-liquid interaction characteristic," Energy, Elsevier, vol. 183(C), pages 1233-1243.
    2. Yao, Xin & Liu, Yang & Yu, Qingbo & Wang, Shuhuan, 2023. "Energy consumption of two-stage system of biomass pyrolysis and bio-oil reforming to recover waste heat from granulated BF slag," Energy, Elsevier, vol. 273(C).
    3. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
    2. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    3. Xie, Huaqing & Li, Rongquan & Yu, Zhenyu & Wang, Zhengyu & Yu, Qingbo & Qin, Qin, 2020. "Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier," Energy, Elsevier, vol. 200(C).
    4. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    5. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    6. Zuo, Zongliang & Feng, Yan & Li, Xiaoteng & Luo, Siyi & Ma, Jinshuang & Sun, Huiping & Bi, Xuejun & Yu, Qingbo & Zhou, Enze & Zhang, Jingkui & Guo, Jianxiang & Lin, Huan, 2021. "Thermal-chemical conversion of sewage sludge based on waste heat cascade recovery of copper slag: Mass and energy analysis," Energy, Elsevier, vol. 235(C).
    7. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    8. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
    9. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O," Energy, Elsevier, vol. 167(C), pages 688-697.
    10. Pashchenko, Dmitry, 2020. "A heat recovery rate of the thermochemical waste-heat recuperation systems based on experimental prediction," Energy, Elsevier, vol. 198(C).
    11. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    12. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    13. Wenqiang Sun & Zuquan Zhao & Yanhui Wang, 2017. "Thermal Analysis of a Thermal Energy Storage Unit to Enhance a Workshop Heating System Driven by Industrial Residual Water," Energies, MDPI, vol. 10(2), pages 1-19, February.
    14. Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.
    15. Lv, Yi-Wen & Zhu, Xun & Wang, Hong & Dai, Mao-Lin & Ding, Yu-Dong & Wu, Jun-Jun & Liao, Qiang, 2021. "A hybrid cooling system to enable adhesion-free heat recovery from centrifugal granulated slag particles," Applied Energy, Elsevier, vol. 303(C).
    16. Andrzej Rostocki & Hilal Unyay & Katarzyna Ławińska & Andrzej Obraniak, 2022. "Granulates Based on Bio and Industrial Waste and Biochar in a Sustainable Economy," Energies, MDPI, vol. 16(1), pages 1-18, December.
    17. Duan, Wenjun & Gao, Yunke & Yu, Qingbo & Wu, Tianwei & Wang, Zhimei, 2019. "Numerical simulation of coal gasification in molten slag: Gas-liquid interaction characteristic," Energy, Elsevier, vol. 183(C), pages 1233-1243.
    18. Peters, Jens F. & Banks, Scott W. & Bridgwater, Anthony V. & Dufour, Javier, 2017. "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied Energy, Elsevier, vol. 188(C), pages 595-603.
    19. Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
    20. Chen, Lingen & Shen, Xun & Xia, Shaojun & Sun, Fengrui, 2017. "Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas (BOG) by the methane reforming with carbon dioxide reaction," Energy, Elsevier, vol. 118(C), pages 906-913.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:792-803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.