IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124002521.html
   My bibliography  Save this article

Advances and challenges toward efficient utilization of H2S for H2 production

Author

Listed:
  • Lou, Minghe
  • Wang, Ruoyu
  • Song, Haitao

Abstract

H2S is an essential byproduct in refineries during the hydrodesulfurization process, serving as the largest sulfur resource in the industry. However, most of the H2S is processed with the two-step Claus Process, where the hydrogen is converted into water. As the development of the chemical industry creates growing energy demand and sustainability requirements, more efficient utilization of H2S to produce clean hydrogen and other value-added chemicals has attracted much research interest. Intending to bridge the gap between current research and industrial application, recent advances in thermo- and photocatalytic H2S decomposition are summarized based on strategies taken to alleviate their intrinsic restriction, thereby increasing single-run conversion. Thermal-based H2S decomposition is limited by its unfavorable thermodynamics, and this can be relieved or circumvented by shifting the equilibrium or implementing multistep reaction routes. Photocatalytic H2S decomposition is hampered by the photocatalysts' low stability and quantum efficiency, and surface modifications and electronic structure engineering have been applied to design novel photocatalysts. Future research directions are suggested to achieve more efficient H2S decomposition and more sustainable sulfur recovery.

Suggested Citation

  • Lou, Minghe & Wang, Ruoyu & Song, Haitao, 2024. "Advances and challenges toward efficient utilization of H2S for H2 production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002521
    DOI: 10.1016/j.rser.2024.114529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdul Mujeebu, Muhammad, 2016. "Hydrogen and syngas production by superadiabatic combustion – A review," Applied Energy, Elsevier, vol. 173(C), pages 210-224.
    2. Wang, Weijian & Olguin, Gianni & Hotza, Dachamir & Seelro, Majid Ali & Fu, Weng & Gao, Yuan & Ji, Guozhao, 2022. "Inorganic membranes for in-situ separation of hydrogen and enhancement of hydrogen production from thermochemical reactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Shraavya Rao & Babul Prasad & Yang Han & W.S. Winston Ho, 2023. "Polymeric Membranes for H 2 S and CO 2 Removal from Natural Gas for Hydrogen Production: A Review," Energies, MDPI, vol. 16(15), pages 1-37, July.
    4. Sun, Shangcong & Jiang, Qiuqiao & Zhao, Dongyue & Cao, Tiantian & Sha, Hao & Zhang, Chuankun & Song, Haitao & Da, Zhijian, 2022. "Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Bai, Xue-feng & Cao, Ying & Wu, Wei, 2011. "Photocatalytic decomposition of H2S to produce H2 over CdS nanoparticles formed in HY-zeolite pore," Renewable Energy, Elsevier, vol. 36(10), pages 2589-2592.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).
    2. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    3. Ipsakis, Dimitris & Kraia, Tzouliana & Konsolakis, Michalis & Marnellos, George, 2018. "Remediation of Black Sea ecosystem and pure H2 generation via H2S-H2O co-electrolysis in a proton-conducting membrane cell stack reactor: A feasibility study of the integrated and autonomous approach," Renewable Energy, Elsevier, vol. 125(C), pages 806-818.
    4. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    5. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production," Applied Energy, Elsevier, vol. 208(C), pages 905-919.
    6. Gennadii Golub & Nataliya Tsyvenkova & Savelii Kukharets & Anna Holubenko & Ivan Omarov & Oleksandra Klymenko & Krzysztof Mudryk & Taras Hutsol, 2023. "European Green Deal: An Experimental Study of the Biomass Filtration Combustion in a Downdraft Gasifier," Energies, MDPI, vol. 16(22), pages 1-15, November.
    7. Shraavya Rao & Babul Prasad & Yang Han & W.S. Winston Ho, 2023. "Polymeric Membranes for H 2 S and CO 2 Removal from Natural Gas for Hydrogen Production: A Review," Energies, MDPI, vol. 16(15), pages 1-37, July.
    8. Ruban, Priya & Sellappa, Kanmani, 2014. "Development and performance of bench-scale reactor for the photocatalytic generation of hydrogen," Energy, Elsevier, vol. 73(C), pages 926-932.
    9. Liu, Luyao & Duan, Liqiang & Zheng, Nan & Wang, Qiushi & Zhang, Maotong & Xue, Dong, 2024. "Thermodynamic performance evaluation of a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation," Energy, Elsevier, vol. 294(C).
    10. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Su, En-Chin & Huang, Bing-Shun & Liu, Chao-Chang & Wey, Ming-Yen, 2015. "Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts," Renewable Energy, Elsevier, vol. 75(C), pages 266-271.
    12. Mushtaq, Muhammad Asim & Arif, Muhammad & Yasin, Ghulam & Tabish, Mohammad & Kumar, Anuj & Ibraheem, Shumaila & Ye, Wen & Ajmal, Saira & Zhao, Jie & Li, Pengyan & Liu, Jianfang & Saad, Ali & Fang, Xia, 2023. "Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Lu, Peng & Sun, Jian & Shen, Dongming & Yang, Ruiqin & Xing, Chuang & Lu, Chengxue & Tsubaki, Noritatsu & Shan, Shengdao, 2018. "Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface," Applied Energy, Elsevier, vol. 209(C), pages 1-7.
    14. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    15. Jinglin Li & Bowen Sheng & Yiqing Chen & Jiajia Yang & Ping Wang & Yixin Li & Tianqi Yu & Hu Pan & Liang Qiu & Ying Li & Jun Song & Lei Zhu & Xinqiang Wang & Zhen Huang & Baowen Zhou, 2024. "Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
    17. Meng Yue & Mao-Zhao Xie & Jun-Rui Shi & Hong-Sheng Liu & Zhong-Shan Chen & Ya-Chao Chang, 2020. "Numerical and Experimental Investigations on Combustion Characteristics of Premixed Lean Methane–Air in a Staggered Arrangement Burner with Discrete Cylinders," Energies, MDPI, vol. 13(23), pages 1-13, December.
    18. Yang, Fan & Zhong, Jie & Liu, Xiaohui & Zhu, Xuedong, 2018. "A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite," Applied Energy, Elsevier, vol. 226(C), pages 22-30.
    19. Chung, Kyong-Hwan & Park, Young-Kwon & Kim, Sun-Jae & Kim, Sang-Chai & Jung, Sang-Chul, 2023. "Green hydrogen production from ammonia water by liquid–plasma cracking on solid acid catalysts," Renewable Energy, Elsevier, vol. 216(C).
    20. Ruggero Bellini & Ilaria Bassani & Arianna Vizzarro & Annalisa Abdel Azim & Nicolò Santi Vasile & Candido Fabrizio Pirri & Francesca Verga & Barbara Menin, 2022. "Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO 2," Energies, MDPI, vol. 15(11), pages 1-34, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.