IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51810-y.html
   My bibliography  Save this article

Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon

Author

Listed:
  • Jinglin Li

    (Shanghai Jiao Tong University)

  • Bowen Sheng

    (Peking University)

  • Yiqing Chen

    (McGill University)

  • Jiajia Yang

    (Peking University)

  • Ping Wang

    (Peking University)

  • Yixin Li

    (Shanghai Jiao Tong University)

  • Tianqi Yu

    (Shanghai Jiao Tong University)

  • Hu Pan

    (Shanghai Jiao Tong University)

  • Liang Qiu

    (Shanghai Jiao Tong University)

  • Ying Li

    (Shanghai Jiao Tong University)

  • Jun Song

    (McGill University)

  • Lei Zhu

    (Shanghai Jiao Tong University)

  • Xinqiang Wang

    (Peking University
    Peking University Yangtze Delta Institute of Optoelectronics
    Peking University)

  • Zhen Huang

    (Shanghai Jiao Tong University)

  • Baowen Zhou

    (Shanghai Jiao Tong University)

Abstract

Photo-thermal-coupling ammonia decomposition presents a promising strategy for utilizing the full-spectrum to address the H2 storage and transportation issues. Herein, we exhibit a photo-thermal-catalytic architecture by assembling gallium nitride nanowires-supported ruthenium nanoparticles on a silicon for extracting hydrogen from ammonia aqueous solution in a batch reactor with only sunlight input. The photoexcited charge carriers make a predomination contribution on H2 activity with the assistance of the photothermal effect. Upon concentrated light illumination, the architecture significantly reduces the activation energy barrier from 1.08 to 0.22 eV. As a result, a high turnover number of 3,400,750 is reported during 400 h of continuous light illumination, and the H2 activity per hour is nearly 1000 times higher than that under the pure thermo-catalytic conditions. The reaction mechanism is extensively studied by coordinating experiments, spectroscopic characterizations, and density functional theory calculation. Outdoor tests validate the viability of such a multifunctional architecture for ammonia decomposition toward H2 under natural sunlight.

Suggested Citation

  • Jinglin Li & Bowen Sheng & Yiqing Chen & Jiajia Yang & Ping Wang & Yixin Li & Tianqi Yu & Hu Pan & Liang Qiu & Ying Li & Jun Song & Lei Zhu & Xinqiang Wang & Zhen Huang & Baowen Zhou, 2024. "Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51810-y
    DOI: 10.1038/s41467-024-51810-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51810-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51810-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kanaan, Riham & Affonso Nóbrega, Pedro Henrique & Achard, Patrick & Beauger, Christian, 2023. "Economical assessment comparison for hydrogen reconversion from ammonia using thermal decomposition and electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Sun, Shangcong & Jiang, Qiuqiao & Zhao, Dongyue & Cao, Tiantian & Sha, Hao & Zhang, Chuankun & Song, Haitao & Da, Zhijian, 2022. "Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Huihuang Fang & Simson Wu & Tugce Ayvali & Jianwei Zheng & Joshua Fellowes & Ping-Luen Ho & Kwan Chee Leung & Alexander Large & Georg Held & Ryuichi Kato & Kazu Suenaga & Yves Ira A. Reyes & Ho Viet T, 2023. "Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Riham Kanaan & Pedro Henrique Affonso Nóbrega & Patrick Achard & Christian Beauger, 2023. "Economical assessment comparison for hydrogen reconversion from ammonia using thermal decomposition and electrolysis," Post-Print hal-04337525, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
    2. Liu, Luyao & Duan, Liqiang & Zheng, Nan & Wang, Qiushi & Zhang, Maotong & Xue, Dong, 2024. "Thermodynamic performance evaluation of a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation," Energy, Elsevier, vol. 294(C).
    3. Chung, Kyong-Hwan & Park, Young-Kwon & Kim, Sun-Jae & Kim, Sang-Chai & Jung, Sang-Chul, 2023. "Green hydrogen production from ammonia water by liquid–plasma cracking on solid acid catalysts," Renewable Energy, Elsevier, vol. 216(C).
    4. Sitar, Rok & D'Aquila, Alexandra & Jechura, John L. & Wolden, Colin A., 2024. "Techno-economic analysis of zero-carbon ammonia-hydrogen fuel blend production through a catalytic membrane reformer and packed bed reactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Mushtaq, Muhammad Asim & Arif, Muhammad & Yasin, Ghulam & Tabish, Mohammad & Kumar, Anuj & Ibraheem, Shumaila & Ye, Wen & Ajmal, Saira & Zhao, Jie & Li, Pengyan & Liu, Jianfang & Saad, Ali & Fang, Xia, 2023. "Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Lou, Minghe & Wang, Ruoyu & Song, Haitao, 2024. "Advances and challenges toward efficient utilization of H2S for H2 production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51810-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.